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Abstract

Lime-based mortars were frequently used in history and therefore they are required
for restoration of ancient masonry structures by public authorities. However, their
slow setting, relatively low tensile strength, and quite extensive shrinkage cracking
are the main obstacles to their application. These have been partly overcome by
the addition of pozzolans, such as volcanic ash or crushed clay products, exploited
by masons since the Roman period. Such mortars proved to be more resistant
especially with respect to seismic loading. The enhancement of mechanical prop-
erties was later attributed to the formation of hydration products such as CSH gels
present in modern Portland cement concrete. In the case of addition the crushed
clay products, such as pottery or brick fragments, the reduced shrinkage cracking
at the interface between the compliant particles and the surrounding matrix seems
to have the major positive impact on the mortars. The Romans used crushed clay
aggregates where there was no natural source available, and these mortars, known
as cocciopesto, exhibited a remarkable resistance.

The presented study exploiting the combination of numerical simulations and ad-
vanced experimental measurements reveals the influence of various mortars in-
tended for the repairs of cultural heritage on the behavior of masonry loaded in
compression and bending. The results indicate that the traditional materials can be
efficiently utilized for the production of modern high-strength mortars compatible
with the materials used in ancient times.
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Abstrakt

Vápenné malty byly v minulosti široce použı́vané a proto jsou dnes vyžadovány pro
opravu historických zděných konstrukcı́ ze strany památkové péče. Nicméně jejich
pomalé tuhnutı́, relativně nı́zká pevnost v tahu a vznik smršťovacı́ch trhlin jsou
hlavnı́ překážky pro jejich použitı́. Tyto překážky lze částečně překonat přidánı́m
pucoánů, jako je sopečný popel nebo drcené výrobky z pálené hlı́ny, čehož využı́vali
zednı́ci už v Řı́mském obdobı́. Tyto malty se ukazujı́ být odolné zejména s ohledem
na seismické zatı́ženı́. Zlepšenı́ mechanických vlastnostı́ bylo později připisováno
tvorbě hydratačnı́ch produktů, jako jsou CSH gely přı́tomné v modernı́m betonu z
portlandského cementu. V přı́padě přı́davku drcených jı́lových výrobků, jako jsou
keramika nebo úlomky cihel, docházı́ ke snı́ženı́ výskytu trhlin na rozhranı́ mezi
částicemi a okolnı́ matricı́. Řı́mané použı́vali drcené jı́lové produkty, když nebyly
k dispozici žádné jiné zdroje a tyto malty, známé jako cocciopesto, vykazovaly
pozoruhodnou odolnost.

Prezentovaná studie využı́vá kombinaci numerických simulacı́ s pokročilým exper-
imentálnı́m měřenı́m deformacı́, využı́vajı́cı́m korelace digitálnı́ho obrazu. Kon-
krétně je studie zaměřena na vliv spárových malt zamýšlených pro opravy kul-
turnı́ch památek, na chovánı́ zdiva zatı́ženého tlakovou silou a ohybovým mo-
mentem. Výs-ledky naznačujı́, že tradičnı́ materiály mohou být efektivně využity
pro výrobu modernı́ch vysokopevnostnı́ch malt, kompatibilnı́ch s materiály použı́-
vanými v dávných dobách.
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Chapter 1

Introduction and State of Art

The purpose of this thesis is to investigate the structural performance of different mortars com-
monly used in the repairs of historic buildings. The study consists of a comprehensive experi-
mental and numerical analysis. The material properties of individual constituents were found by
standard laboratory tests, namely uniaxial compression and three-point bending. Several lime-
based and cement-based mortars with various additives were used in the bed joints of masonry
pillars subjected to a quasi-static combination of compression and bending. An experimental
analysis was employed to study the failure modes and crack patterns using the digital image
correlation (DIC), to assess the structural performance of the investigated mortars and verify
the proposed material model implemented in the finite element (FE) package OOFEM. Numer-
ical FE analysis was then used for parametric studies of key material parameters that affect the
load-bearing capacity and failure modes of the masonry piers.

1.1 Historical Background

Mortars is among the oldest and the most widely used building materials for their compliance
and their easy adaptability to the morphological needs of the construction work. In human
history various types of mortars were invented. From a modern chemical point of view it is
possible to divide them into two general groups: mortars based on hydraulic or non-hydraulic
chemical components. The term historical mortar is used basically for all types of mortars
which have been used before the Portland cement invention in 19th century. The first mortars
were made of mud and clay. According to research of Roman Ghirshman, the first evidence
of humans using a form of mortar was at the Mehrgarh of Baluchistan in Pakistan, built of
sun-dried bricks bounded by clay [5] in 6,500 BC. Additional progress was achieved with the
invention of lime. In the Middle Ages the use of mortars undergone huge research and the first
mortars based on hydraulic reaction were invented. These mortars were composite material
formed by a binder (hydraulic or aerial lime) and variety of inert materials (silicate, dolomite or
carbonate sand) and some additives mentioned further.

Historical and monumental buildings represents the culture and stories of the people who
built and lived in them. This makes the places with well-preserved cultural heritage very at-
tractive for tourists, which has a huge positive impact on the popularity and economy of these
regions. For this reason, preservation and restoration of historic masonry structures is usu-
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ally supported by the governments or organizations. Most famous organization to preserve
cultural heritage, but not only for this purpose, is United Nations Educational, Scientific and
Cultural Organization, UNESCO, a specialized agency of the United Nations. UNESCO has
195 member states around the whole world, it was founded in 1946 and the location of the major
mansion is in Paris, France. Inappropriate attempts to recondition can cause enormous damage,
and therefore authorities for cultural heritage have introduced numerous demands on techniques
and materials used for the protection and repairs of these structures. Among the most important
historical structures could be regarded: Hagia Sofia in Istanbul, Turkey; Cathedral of the Holy
Cross and Saint Eulalia in Barcelona, Spain; St Peter’s Basilica in Rome, Italy; Monastery San
Vicente de Fora in Lisbon, Portugal; or Byzantine monuments on the island of Crete, Greece.

(a) Hagia Sofia arches (b) Panagia Kera in Crete

Figure 1.1: Typical ancient masonry structures.

1.2 Requirements for Nowadays Repair Mortars

Masonry structures usually exhibit high durability, but on the other hand, they are relatively dif-
ficult to maintain. Deterioration and damage are usually concentrated in the joints between brick
or stone units. It is widely known, not only in the academic area, that the mortars for repairs have
to be compatible with the original materials. In the last 50 years, serious damage to a number of
historical masonry structures was caused by the extensive use of Portland cement in the mortar
mixtures [6, 7, 8]. The aim of the Portland cement use was to increase initial strength, dura-
bility, and reduce shrinkage. In their unmodified form, the lime-based mortars exhibit opposite
behavior: slow increase of strength, high shrinkage, and low ultimate strength [9]. However,
the use of Portland cement-based mortars was finally reconsidered, due to their low plasticity,
excessive brittleness, and rigidity of earnings at the beginning [10, 11, 12, 13]. In addition, the
relatively high content of soluble salts such as most common are calcium sulphate− CaSO4 and
sodium sulphate− Na2SO4 is also undesirable. These salts leach over time [11, 12, 13] and can
seriously damage the original masonry units due to the high crystallization pressures [14, 15]
and produce anesthetic layers on the surface of masonry elements. Maravelaki-Kalaitzaki et al.
[16] also criticized cement-based mortars, which were used for restoration purposes, for their
limited physico-chemical and mechanical compatibility with the old masonry. The adhesion
of cement-based to the old historic materials was found very poor, their thermal conductivity
usually much higher, and the open porosity lower than of the lime-based mortars [15].
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Very strict regulations in relation to the use of Portland cement-based mortars have led to
the use of traditional ingredients such as volcanic ash, burnt clay shale [17] or metakaolin [13]
especially during the last decades. These additives known as pozzolans have been used since
ancient times in combination with lime to improve the moisture resistance of mortars, their
resistance to frost [18], and also extend their lifetime [9, 13] and mechanical strength [19, 20].
Many researchers believe that the first use of truly cementitious binding agents − pozzolans
(occurred in southern Italy around the second century BC) was a first little resemblance to
modern Portland cement concrete. The Pantheon, constructed in 126 AD, is one of the structural
marvels of all times. This adoption of Pantheon rotunda is based upon the use of volcanic ash
from near Pozzuoli, which has been combined with the lime to provide concrete far stronger
than anything previously produced. Nowadays usage of pozzolans is also very important in
the case of mortars for repairs, which are more resistant to cracking. Pure lime mortars can
cause peeling of facade surface layers which has a negative aesthetic impact [21]. Pozzolanic
additives are also very effective in reducing clotting [22], shrinkage and the subsequent creation
of initial microcracks which reduce initial effective mortar stiffness [23, 24].

After a long period of lime-based mortars use, ancestors tried to find an alternative to natural
pozzolans when there was no natural source available in the region. The Phoenicians were
probably the first to add powdered clay products such as clay bricks [25], tiles or pieces of
crushed earthenware to mortar, so as to increase their durability and strength. Crushed bricks
were often added to the mortar used in load-bearing walls during the Roman Empire [26] and
Romans called the material cocciopesto [27]. Cocciopesto mortars were widely used from the
early Hellenistic period until the Ottoman water retaining structures to protect the walls from
moisture, typically in the spa, canals, and aqueducts [28, 29]. Brick dust was mainly used for
rendering, while large pebbles to of 25 mm in diameter appeared mainly in masonry walls,
vaults, and foundations [25] and joint thickness often exceeded 40 mm (in case of Hagia Sofia
even 70 mm thick joints are no exception).

Better effective mechanical properties such strength, improved resistance to weather condi-
tions − durability and last but not least higher resistance to seismic load are attributed to the
additional formation of hydration products. A few researchers suggest [22, 23, 30] that these
products arise on the interface between crushed bricks and surrounding lime-based matrix.

1.3 Chemical Processes

Knowledge of basic chemical processes is necessary for the deeper understanding of mortars
behavior. There are basically two principal groups of binders: air and hydraulic binders. Typ-
ical representative air binder is well-known air lime and on the other hand as an exemplary
hydraulic binder is considered lime with hydraulic properties or modern Portland cement. Hy-
draulic binders are demarcated by the ability to set and harden in a very humid environment, or
completely under water.

1.3.1 Air Lime

Air lime is produced from calcium carbonate (CaCO3), referred to as calcite, with a varying
level of calcium magnesium carbonate (CaMg)(CO3)2 - dolomite. In the nature, calcite can be
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found in a variety of forms, for example chalk or limestone. To convert the raw material into
air lime, heating to temperatures below the needed range required for sintering, 900− 1250 ◦C,
must be ensured. At these temperatures, the limestone breaks down by giving off carbon dioxide
(CO2) leaving calcium oxide (CaO) and magnesium oxide (MgO). The compound needs to pass
through grinding in ball or bar mills into a very fine powder (<0.09 mm). Mixture of these two
components is known as quicklime. Basically two various forms of quicklime are possible to
create, depending on the temperature of heating process and the speed of temperature increment.
Fast heated calcite is transformed to hard quicklime, while the soft quicklime is heated slowly
and in a lower temperature. Soft quicklime is suitable to use in lime mortars for its higher
reactivity, higher porosity and consequent lower bulk density.

Quicklime is unstable and needs to be hydrated with water, this process is called slaking.
Two ways of slaking are available: wet and dry. Wet slaking is accompanied with relatively
high excess of water and this process is suitable to use in-situ on a construction sites. This
reaction is exothermic and the temperature shall not exceed 100 ◦C. Dry slaking is done only
in the lime-kilns with only small excess of water and the designation of the final product is
lime hydrate. From a chemical point of view, the result of both methods is calcium hydroxide
or easily said slaked lime. Whole chemical process of lime production could be described the
following equations:

CaCO3
+176,68 kJ/mol−−−−−−−−→ CaO + CO2, (1.1)

(CaMg)(CO3)2
+276,75 kJ/mol−−−−−−−−→ CaO + MgO + 2CO2, (1.2)

CaO + H2O −→ Ca(OH)2 + 65, 28 kJ/mol, (1.3)

MgO + H2O −→ Mg(OH)2 + 27, 43 kJ/mol. (1.4)

The process of air-lime hardening consists of two phases: desiccation of colloidal gel (evap-
orating the moisture from the mortar mix) and process of carbonation. Carbonation reaction
involves the transformation of calcium hydroxide into calcium carbonate as a result of the re-
action between calcium hydroxide and atmospheric carbon dioxide. This reaction is controlled
by the diffusion of the CO2 through the pores, dissolution of the CO2 and calcium hydroxide
in the water within the capillary pores, and reaction between Ca2+ and CO2−

3 ions forming
insoluble calcium carbonate crystals. The reaction proceeds slowly and continues until either
all calcium hydroxide has reacted. In a simplified form the process can be described by the
following equation:

Ca(OH)2 + CO2
H2O−−→ CaCO3 + H2O + 111, 40 kJ/mol. (1.5)

Purity of commercial produced limes is regulated by EN 459-1:2010 the European standard
for Building Lime, which is not wery strict. By the content of MgO or Mg(OH)2 the quick
lime is divided into two groups: quicklime with MgO ≤ 5% content is calcium lime, with a
higher content is designated as dolomitic lime. Complete list of commonly produced building
air limes is shown in Table 1.1.
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Table 1.1: List of building air limes, reproduced from [31]

Designation Notation Values given as mass fraction in percent
CaO + MgO MgO CO2 SO3

Calcium lime 90 CL 90 ≥ 90 ≤ 5 ≤ 4 ≤ 2
Calcium lime 80 CL 80 ≥ 80 ≤ 5 ≤ 7 ≤ 2
Calcium lime 70 CL 70 ≥ 70 ≤ 5 ≤ 12 ≤ 2

Dolomitic lime 90-30 DL 90-30 ≥ 90 ≥ 30 ≤ 6 ≤ 2
Dolomitic lime 90-5 DL 90-5 ≥ 90 ≥ 5 ≤ 6 ≤ 2

Dolomitic lime 85-30 DL 85-30 ≥ 85 ≥ 30 ≤ 9 ≤ 2
Dolomitic lime 80-5 DL 80-5 ≥ 80 ≥ 5 ≤ 9 ≤ 2

1.3.2 Lime with Hydraulic Properties

Production of lime with hydraulic properties is very similar to the air lime production process.
Main raw materials are argillaceous or siliceous limestones containing calcite and impurities
such as dolomite and calcareous marls or other marlites. Marlites have a natural content of
hydraulic agents, primarily silica (SiO2) and alumina (AlO3). These agents are major bearers
of the hydraulic properties. As a result of the burning process, silica and alumina react with
lime to form silicates and aluminates, especially dicalcium silicate - 2CaO·SiO2 (C2S in cement
chemistry notation1).

Tricalcium silicate - 3CaO·SiO2 (C3S) can be present as well, but in a very low amount (C3S
forms at higher than 1250 ◦C temperature).

Another way how to prepare lime with hydraulic properties is to mill the air lime together
with additives (pozzoans). Burning and slaking procedures are thus more complex than those
associated with the production of air lime, but the materials produced are far more versatile.
Hardening of lime with hydraulic properties is a very complex problem, but at least one equation
should be mentioned, hardening of C2S phase:

2(2Ca2O · SiO2) + 4H2O −→ 3CaO · 2SiO2 · 3H2O + Ca(OH)2 + 81, 12 kJ/mol. (1.6)

Sub-families of limes with hydraulic properties are: natural hydraulic lime NHL, formulated
lime FL and hydraulic lime HL. Their properties depend on the composition, burning and
slaking.

• NHL lime is made by burning more or less argillaceous or siliceous limestones with
reduction to powder by slaking with or without grinding. The hydraulic properties exclu-
sively result from the special chemical composition of the natural raw materials.

• FL lime mainly consisting of air lime with NHL and/or with some pozzolanic material
additives. Inclusion of any cement or cement clinker must be declared and present in a
limited percentage.

1Cement chemistry notation was developed to simplify expressions of complicated chemical compounds of
cement. The notation does not have any relation with a ordinary chemistry elements. Individual abbreviations
represent: C − CaO, S − SiO2, A − Al2O3, F − Fe2O3, T − TiO2, M −MnO, K − K2O, N − Na2O, H − H2O.
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• HL lime consists of by lime and other additives such as cement, fly ash, blast surface
slag, limestone filler and other suitable materials.

The standart ČSN EN 459 1 [31] divides the limes with hydraulic properties by volume mass of
SO3 and Ca(OH)2 and their compressive strengths in 7 and 28 days; the complete list is provided
in Table 1.2. At first sight there is no difference between the FL A, B and C but applications of
these limes are different.

Table 1.2: List of building limes with hydraulic properties, reproduced from [31]

Designation Notation Mass fraction in percent Compress. strg. [MPa]
SO3 Ca(OH)2 7 days 28 days

Natural hydraulic lime 2 NHL 2 ≤ 2 ≥ 35 − ≥ 2 to ≤ 7
Natural hydraulic lime 3,5 NHL 3,5 ≤ 2 ≥ 25 − ≥ 3,5 to ≤ 10
Natural hydraulic lime 5 NHL 5 ≤ 2 ≥ 15 ≥ 2 ≥ 5 to ≤ 15

Formulated lime A
FL A 2 ≤ 2 ≥ 40 to < 80 − ≥ 2 to ≤ 7

FL A 3,5 ≤ 2 ≥ 25 to < 50 − ≥ 3,5 to ≤ 10
FL A 5 ≤ 2 ≥ 15 to < 40 ≥ 2 ≥ 5 to ≤ 15

Formulated lime B
FL B 2 ≤ 2 ≥ 40 to < 80 − ≥ 2 to ≤ 7

FL B 3,5 ≤ 2 ≥ 25 to < 50 − ≥ 3,5 to ≤ 10
FL B 5 ≤ 2 ≥ 15 to < 40 ≥ 2 ≥ 5 to ≤ 15

Formulated lime C
FL C 2 ≤ 2 ≥ 40 to < 80 − ≥ 2 to ≤ 7

FL C 3,5 ≤ 2 ≥ 25 to < 50 − ≥ 3,5 to ≤ 10
FL C 5 ≤ 2 ≥ 15 to < 40 ≥ 2 ≥ 5 to ≤ 15

Hydraulic lime 2 HL 2 ≤ 3 ≥ 10 − ≥ 2 to ≤ 7
Hydraulic lime 3,5 HL 3,5 ≤ 3 ≥ 8 − ≥ 3,5 to ≤ 10
Hydraulic lime 5 HL 5 ≤ 3 ≥ 4 ≥ 2 ≥ 5 to ≤ 15

1.3.3 Portland Cement

Portland cement is the basic ingredient of cement-based mortars and modern concrete. The
first manufacturing step is combining a variety of raw ingredients so that the resulting cement
attains the desired chemical composition. Materials used for manufacturing the Portland cement
include limestone, shells, and chalk or marl combined with with additives as shale, clay, slate,
blast furnace slag, silica sand, and iron ore. Most commonly the Portland cement is produced
using so called ”dry method” which consists of crushing the ingredients, their mixing and finally
heating in the cement kiln up to level of sintering which is around 1550 ◦C. The major chemical
reaction is dehydroxylation of limestone and clay minerals at temperatures between 450 to
600 ◦C:

5CaCO3 + Al2O3 · 2SiO2
+energy−−−−→ CaO · Al2O3 + 2(2CaO · SiO2) + 5CO2. (1.7)
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In the next stage around 900 to 950 ◦C the formation of C3A from the previous stage product
(CA) is dominant and calcium oxide (created by thermal decomposition of calcium carbonate
as in case of lime). The process can be described by the following equation:

CaO · Al2O3 + 2CaO
+energy−−−−→ 3CaO · Al2O3. (1.8)

Above the temperature 1250 ◦C, the melted minerals emerge in the form of liquid phase and
among others C3S is formed:

2CaO · SiO2 + CaO
+energy−−−−→ 3CaO · SiO2. (1.9)

Eventually, clinker is formed and the cooling phase follows. The high rate of cooling to
about 1100 ◦C is important to provide highly reactive cement rich in C3S and avoid formation
C2S and CaO. Once the nodules of cement clinker have cooled, they are ground into a fine
powder in a large grinding ball or bar mills. At the same time, a small amount of calcium
sulfate such as gypsum (calcium sulfate dihydrate) is blended into the cement. The calcium
sulfate is added to control the rate of early reaction of the cement.

About 90 − 95% of a Portland cement is comprised of the four main cement minerals,
which are C3S, C2S, C3A, and C4AF, with the remainder consisting of calcium sulfate, alkali
sulfates, unreacted (free) CaO, MgO, and other minor constituents left over from the clinkering
and grinding steps [32]. The four cement minerals play very different roles in the hydration
process that converts the dry cement into hardened cement paste. Five main groups of Portland
cement are distinguished according to the ratio of the individual minerals, see Table 1.3 for
detailed description.

Table 1.3: General features of the main types of Portland cement, reproduced from [33]

Type Characteristics Applications

CEM I
Fairly high C3S content for good early General construction (most buildings,

strength development bridges, mortars, precast units, etc.)

CEM II Low C3A content (< 8%)
Structures exposed to soil or water

containing sulfate ions

CEM III
Ground more finely, may have slightly Rapid construction, cold weather

more C3S content concreting

CEM IV Low content of C3S (< 50%) and C3A
Massive structures such as dams or

huge foundations

CEM V Very low C3A content (< 5%)
Structures exposed to high levels of

sulfate ions

Each of the four main cement minerals reacts at a different rate and tends to form different
solid phases when it hydrates. The whole hydratation process is a complex problem as in the
case of limes with hydraulic properties. Hydratation of C3S, which is the most abundant and
important cement mineral in Portland cements and mostly contributes to the early strength gain
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of C-S-H gel (calcium-silicate-hydrate gel), is described by the following equation:

2(3CaO · SiO2) + 6H2O −→ 3CaO · 2SiO2 · 3H2O + 3Ca(OH)2 + energy. (1.10)

C2S hardens slowly and contributes largely to strength increases at ages beyond 7 days. By
the reaction of C3A a large amount of heat during the first day of hardening is released. This
reaction, together with C3S and C2S development, is mainly responsible for the early strength
gain and the hydration process can be described by the following equation:

3CaO · Al2O3 + Ca(OH)2 + 12H2O −→ 3CaO · Al2O3 · Ca(OH)2 · 12H2O + energy.
(1.11)

More detail informations about the hydration of Portland cement can be found in [32].

1.3.4 Pozzolans

Pozzolanic materials are natural substances or industrial by-products having an amorphous or
partially crystalline structure formed by silica, silico-aluminium compounds or a combination of
both. Pozzolans do not harden when mixed with water, but when they are finely powdered and
in presence of water, they are able to react with the calcium hydroxide at ambient temperature
to form hydrated calcium silicates, enhancing the strength and durability of the lime-based
mortars. In fact the pozzolan-lime reaction is activated even in the case of high air humidity
and therefore these are referred to as a hydraulic binders. Main hydration product is C-S-H gel
(like in the case of Portland cement). There are five major sources of pozzolans provided in the
list below.

• Naturally occurring pozzolan deposits, an ash like product of volcanic activity, can be
found in Europe and the Middle East, among other regions. This type of pozzolan is very
suitable for use in mortars cured in wet conditions.

• Pozzolanic material also can be derived from fired and crushed clay, such as bricks or
brick dust. Kaolinite can be used as the fired product, too, and the formed product is
referred to as metakaolin. This variety is more durable than volcanic pozzolan.

• Furnace slag from industrial processes such manufacturing steel, this type is currently
used as a concrete admixture.

• Fly ash, collected from the exhaust gases during the burning coal or lime by electrostatic
precipitators or bag filters. It is weaker than the other pozzolans and generally not suitable
for brick-and-mortar construction.

• Some pozzolans have been produced by crushing rock and sand, and these have been used
in mortars throughout history but are not commonly used today [34].

Nowadays, the addition of pozzolanic additives to aerial lime mortars is recommended be-
cause they are responsible for the enhancement of mechanical properties in the early age, high
values of mechanical strength, low water permeability, good cohesion between binders and ag-
gregates, and increased durability [9, 13].
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1.3.4.1 Pozzolanic Reaction

The acid-based pozzolanic reaction involves calcium hydroxide and silicic acid and can be
schematically represented as follows:

Ca(OH)2 + H4SiO4 −→ Ca2+ + H2SiO2−
4 + 2H2O −→ CaH2SiO4 · 2H2O, (1.12)

or using the established cement chemistry nomenclature as

CH + SH −→ C–S–H. (1.13)

The ratio between calcium and silica, Ca/Si, and the number of water molecules can vary. Silicic
acid, H4SiO4, is a product of hydration by the simple equation:

SiO2 + 2H2O −→ H4SiO4. (1.14)

1.3.4.2 Metakaolin

Metakaolin, Al2O3·2SiO2, is a dehydroxylated form of the clay mineral kaolinite. It belongs
to a group of natural pozzolans and industrially produced by heat treatment of kaolinite clays.
Kaolinite has a chemical composition of Al2O3·2SiO2·2H2O. When heat treated at the temper-
ature within the range of 600 to 900 ◦C, the chemically bound water is driven away to form
an amorphous aluminosilicate called metakaolin. The calcination temperature depends on the
characteristics of the parent kaolin clay, such as degree of crystallinity and particle size. At
higher temperatures, it recrystallizes, resulting in the formation of mullite (Al6Si2O13) or spinel
(MgAl2O4) and amorphous silica [35] that reduces its pozzolanic reactivity. The reactivity
of metakaolin is dependent upon the amount of kaolinite contained in the original clay mate-
rial. The average particle size of metakaolin varies and can be controlled during processing to
change its properties. Metakaolin is typically white or gray in color and traditionally used in the
manufacture of porcelain. Hydration of metakaolin can be expressed by following equation:

Al2O3 · 2SiO2 + 7Ca(OH)2 + 19H2O
−→ 4CaO · Al2O3 · 19H2O + 3CaO · 2SiO2 · 7H2O.

(1.15)

1.3.4.3 Crushed Bricks

Natural (volcanic) pozzolans were the primary additive to lime mortars in ancient Rome, crushed
brick was used as an alternative when pozzolans were not available, as was mentioned in Sec-
tion 1.2. This fact is cited in Vitruvius’s Ten Books on Architecture and has been evidenced in
analysis of samples of ancient mortar found throughout the Roman Empire as demonstrated in
Figure 1.2.
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(a) Fragments of crushed terracotta (b) Fragments of pottery

Figure 1.2: Fragments of pottery in ancient samples of cocciopesto mortar, reproduced from [1].

The observed reactions could be attributed to the calcium silicate formations at the interface
along the brick or pottery fragments and lime, which makes the interfacial surface alkaline and
causes chemical reaction. The penetration of lime into the ceramic and the consequent reaction
transforms the microstructure of the ceramic by shifting the pore radii into smaller pores [36].
The reaction product fills the discontinuities of the structure, thus eliminating discontinuities
between the mortar and the brick. Small fragments of brick also seem to penetrate the adjacent
mortar [25]. This transformation matches with the hydraulic character of the mortar matrix,
imparting to the mortar high physico-chemical resistance as well as high strength [36].



Chapter 2

Experimental Analysis

The experimental analysis consisted of preparation and testing of mortar samples. The experi-
mental study included two major stages− first, an investigation of the basic material parameters
via three-point bending and compression tests and consequent reproduction using FE analysis.
The second stage consisted of full-scale testing of masonry piers.

2.1 Basic Testing of Mortars

2.1.1 Composition of Tested Mortars

Commonly available white air-slaked lime (CL 90-Q) Čertovy schody of a very high purity
(98.98% of CaO + MgO), produced near the village Tmaň, in Czech Republic was selected in
the study. The size distribution of particles was balanced and the most frequent diameter was
around 15 µm. The specific area, investigated by the air permeability based on Blaine method,
was equal to 16.5 m2/g.

Metakaolin was chosen as a suitable pozzolanic material, because of its high reactivity and
good availability. Metakaolin, with its commercial name Mefisto L05, produced by České
lupkové závody Inc., Nové Strašecı́, Czech Republic is composed mainly from silicates and
aluminates, namely SiO2 (52.1 %) and Al2O3 (43.4 %) but also contains Fe2O3 (1.1 %), TiO2

(1.8 %) and MgO (0.18 %). Control values of granulometry analysis were determined by the
manufacturer as D50=3µm and D90=10µm. Portland cement CEM I 42.5 R produced in Radotı́n
cement plant, Czech Republic was used as an pozzolanic binder alternative to metakaolin to
provide a comparison. Composition of selected Portland cement was following: CaO (66 %),
SiO2 (20 %), Al2O3 (4 %), Fe2O3 (3 %), SO3 (3 %) and MgO (2 %), as provided by XRF
analysis.

This work is aimed on the investigation of the metakaolin and cement influence on the
mechanical properties of lime-based mortars. Beside this, the study is also focused on the
influence of aggregate composition. Previous FE simulations indicate that the mortars with
angular aggregates exhibits higher fracture energy because the shape of grains works as an
efficient obstacle against the crack propagation [3]. As a principal filler river sand of grain
size ranging between 0 and 4 mm from Zálezlice was selected. This choice was based on the
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experience from previous projects [3, 22, 24] as the most suitable for the application as the bed
joint mortar.

Crushed brick particles were also used as a part of the filler as a substitution of river sand.
Previous studies indicate [3, 24] influence of aggregate stiffness on fracture-mechanical proper-
ties− not so rigid aggregates are able to better cooperate with surrounding lime matrix. Further
reason for the use of crushed brick fragments are the results of previous analyses of ancient sam-
ples [6, 25, 37], justifying their use in order to increase the mortar strength. Crushed brick parti-
cles from a brick plant Bratronice, Czech Republic, of grain-size distribution between 2− 5 mm
were used. Particle size distribution curves of river sand and crushed brick obtained by sieve
analysis in accordance with the norm ČSN EN-1015-1 [38] are shown in Figure 2.1.
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Figure 2.1: Grading curves of sand and crushed brick aggregates.

The mass proportion ratio between lime and metakaolin or Portland cement was equal to
7:3 in all mortar mixtures. The water / binder (w/b) ratio was optimized with the respect of
workability test of mortar in accordance with ČSN EN 1015-3 [39]. The mortar cone expansion
reached 13.5±0.3 cm in all cases. One of the priorities was to keep the water to binder ratio as
low as possible to avoid initial cracking induced a high shrinkage. We also experimented with
the use of plasticizer to reduce w/b ratio, but this attempt did not lead to the desired improvement
of mechanical properties. Cohesion between burnt bricks and mortar containing plasticizer
was really poor and it was decided to exclude these mortar samples from further tests. The
amount of aggregates was based on previous studies [9, 40, 41] and results of micromechanical
modeling [23]. Summarized composition of all tested mortar specimens is shown in Table 2.1.

It is important to note that the mortar mixtures containing crushed brick particles retain
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Table 2.1: Mass ratios of individual constituents.

mix
binder aggregate water / dry mass

lime Portland cem. metakaolin sand crushed bricks (water / binder)
LC-S 0.7 0.3 – 3 – 0.175 (0.704)
LMK-S 0.7 – 0.3 3 – 0.180 (0.714)
LMK-SCB 0.7 – 0.3 1 1.5 0.250 (0.875)
L-SCB 1.0 – – 1 1.5 0.320 (0.940)

more water than with sand only (see the water / dry mass ratio records in Table 2.1). This
phenomenon is caused by open porosity system within the brick fragments. Water absorbed by
brick particles can be responsible for a future development of hydraulic phases in the pozzolan-
rich mortars, and consequent strength and stiffness gain [30]. We also tried to prepare mortar
sample containing only aggregate in form of crushed bricks, but the enormous shrinkage and
bad cohesion with the brick substrate were unacceptable.

2.1.2 Acquisition of Basic Material Parameters

The basic material parameters were obtained from the basic material tests following the meth-
ods in ČSN EN 1015-11 [42]. These experiments, namely three-point bending and compression
tests, were carried out to obtain primarily tensile strength ft and compression strength fc. Ac-
quisition of these parameters was also important in the case of common fired clay brick as a
masonry unit used in the full-scale tests of columns mentioned in further text. Beside of these
tests, the dynamic Young’s modulus, Edyn, was assessed by means of the resonance method.
Fracture energy, Gf , was obtained by the interpretation of results of three-point bending tests.

2.1.2.1 Samples Preparation and Curing

After mixing all mortar components in the pre-determined ratios, the mixing process was ac-
complished according to ČSN EN 1015-2 [43] and at least six specimens from each batch were
cast into 160 × 40 × 40 mm prismatic molds and compacted using a shaking table to get rid
of excessive air bubbles. Specimens were removed after 48 hours from the molds and stored
in the laboratory conditions with constant temperature 20±1 ◦C and relative humidity ranging
between 60 and 80 % for 90 days. During the hardening process, longitudinal shrinkage of
samples was measured. Total averaged values after 90 day period are: LMK-SCB − 0.64 %,
LC-S − 0.71 %, LMK-S − 0.83 %, L-SCB − 1.10 %. In case of brick six 140 × 40 × 40 mm
prisms were cut from the common bricks with dimensions 290 × 140 × 65 mm produced in
brick plant Štěrboholy, Czech Republic.

2.1.2.2 Resonance Method

Non-destructive resonance method provides the determination of the dynamic elastic properties
of elastic materials. The method is based on the assumption that the measured specimens ex-
hibit specific mechanical resonant frequencies that are predetermined by the elastic modulus,



EXPERIMENTAL ANALYSIS 14

mass and geometry. This method is specifically appropriate for materials that are homogeneous
and isotropic while not satisfactory for specimens that have cracks or voids forming major dis-
continuities in the specimen [44, 45].

Resonance method was chosen to access the dynamic Young’s modulus, Edyn, of both types
of samples − mortars and brick. This procedure was chosen to overcome the inconvenience
connected to the measurement of the static Youngs modulus arising from the load-dependent
compliance of the loading frame during the destructive tests. According to Malaikah et al. [46]
the discrepancy between dynamic and static moduli measured on the same sample, respective
material, within the range ±10 %.

Young’s modulus calculation is based on the equation for a longitudinal vibration of the
tested beam with a continuously distributed mass and free-free boundary conditions, following

Edyn =
4Lmf 2

I

bt
, (2.1)

where L is the length of the specimen [m], m is the mass of the specimen [kg], fI is the first
fundamental longitudinal resonant frequency of the specimen [Hz], b is the width [m] and t is
the thickness of the specimen [m]. Impact was applied by the impact hammer and on the other
side acceleration transducer was attached (Figure 2.2a) − Brüel & Kjær measurement device
was used. Evaluation of results was carried out by the special PULSE ReflexTM software − see
Figure 2.2b presenting the plot of FFT frequency response of the tested sample with highlighted
first fundamental resonant frequency. All measured values of dynamic elastic modulus for each
sample are summarized in Table 2.2.

Table 2.2: Calculated values of dynamic Young’s moduli, in [GPa].

sample LC-S LMK-S LMK-SCB L-SCB brick
a 6.97 7.19 10.01 2.55 15.01
b 7.17 7.76 10.03 2.09 14.12
c 7.06 7.43 10.22 2.34 13.75
d 7.22 7.33 9.31 2.67 15.26
e 6.89 8.12 10.05 2.23 13.92
f 7.12 7.22 9.95 2.16 14.37

The obtained values of the dynamic Young modulus were used for scaling the displacements
when evaluating the load-displacement diagrams provided by the three-point bending and uni-
axial compression tests. Scaling were done by the recalculations of measured displacements in
the ratio of Young’s moduli by the following equation

dr =
E

Edyn

dm, (2.2)

where dr is recalculated displacement [m], E is the tangential Young’s modulus from load-
displacement diagram obtained during the destructive tests [Pa], Edyn is the dynamic Young’s
modulus [Pa], and dm is measured displacement during the tests [m].
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(a) Sample with attached sensor (b) Frequency response of the sample

Figure 2.2: Processing of modal analysis by resonance method.

2.1.2.3 Three Point Bending

The three point bending flexural test provided values of maximum tensile strength by the fol-
lowing equation

ft =
3FL

2bt2
, (2.3)

where F is the maximum force achieved during the test [N] and L is the span between sup-
ports [m]. Displacement-controlled three-point bending tests were performed on the unnotched
160 × 40 × 40 mm beams with distance between supports equal to 100 mm. The loading
of simply supported beams was accomplished in the midspan and the rate of loading was
0.025 mm/min in order to capture the descending part of the load-displacement diagram and
monitored using MTS Alliance RT 30 kN load cell. The three-point flexure fixture produces its
peak stress at the specimen in mid-point with reduced stress elsewhere.

Fracture energy calculations were based on the following formula

Gf =
gf

Ac

=

∫∞
0
F (dr) ddr

bt
, (2.4)

where gf is the area under the rescaled force-displacement diagram obtained by Equation (2.2)
[J] and Ac is the cross section of the tested specimen [m2]. In Figure 2.3a the test setup and
state of the specimen after the test is illustrated.

2.1.2.4 Uniaxial Compression

The compression test was utilized to investigate the behavior of the material when subjected to
uniaxial compression. The test provides two basic material parameters− compressive strength,
being the ratio between the maximum force and area of the loaded side, and tangent modulus.
Since the Young’s modulus was determined using the resonance method, only compressive
strength was determined based on results of the uniaxial compression test.

The test was carried out on cubic 40 × 40 × 40 mm specimens, cut off the halves of the
cracked beams from the three-point bending tests, and the same device as for the three-point
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(a) Sample of brick after three point bending test (b) Sample of mortar after compression test

Figure 2.3: Sample of brick as documentation of three-point-bending test and sample of LMK-
SCB mortar as an example of compression test.

bending tests was used. A uniform force distribution was accomplished by steel washers, and
the load was applied on the lateral sides (these sides were in contact with the mold during
the preparation of specimens) in order to ensure perfectly smooth and parallel contact. To
prevent skewing of results by the presence of bending moment, the load was applied through
the ball joint assembly (Figure 2.3b). The loading was displacement-controlled with the rate of
0.3 mm/min.

Maximum compression strength was calculated by the following equation

fc =
Fmax

A
, (2.5)

where A is the area [m2] and Fmax is the maximum applied load [N].

2.1.2.5 Adhesive Strength

The test of adhesive strength strictly followed the norm ČSN EN 1015-12 [47]. The adhesive
strength fu was determined as the maximum tensile stress applied by a direct load perpendicular
to the surface of the mortar on a substrate − in our case fired clay brick. The tensile load was
applied by means of a pull-head plate with diameter of 50 mm, glued to the test area of the
mortar surface. The adhesive strength of the mortar-brick interface was determined according
to the following equation

fu =
Fu

A
, (2.6)

where Fu is the failure load [N] and A is the test area of the cylindrical loading plates [m2].

In total six specimens representing all the tested mortars, specified in Table 2.1, were pre-
pared. Preparation consisted of placing 10 mm thick mortar layers on the fired clay bricks,
followed by curing for 7 days in a sealed polyethylene bags at a temperature 20±1 ◦C and than
removed from the bags and stored for another 80 days in laboratory conditions as described in
Section 2.1.2.1. Storing in the plastic bags was important to prevent fast drying responsible for
shrinkage cracking. Second step consisted of separating the mortar circles of a diameter equal
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to 50 mm by a diamond trepanner, and gluing the aluminium plates onto the separated mortar
discs by epoxy resin. Loading was displacement-controlled with the rate of loading 0.03 mm/s
and was accomplished by the same machine as in case of three-point bending and compression
tests. Figure 2.4a shows the configuration during the experiment and Figure 2.4b documents
the typical fracture pattern − all patterns were in the layers of mortar, that means the values are
equal to theoretical tensile strength of mortars. Table 2.3 shows the results of the experiments
− calculated values of tensile strength of mortars at the interface.

(a) Samples of LMK-SCB during the testing (b) Sample after test with typical fracture pattern

Figure 2.4: Execution of adhesive strength tests.

Table 2.3: Calculated values of tensile strength of mortars.

sample LC-S LMK-S LMK-SCB L-SCB
interface strenght [MPa] 0.606 1.442 1.838 0.211

2.1.3 Results

In this section a comparison of individual force-displacement diagrams for all destructive tests
is presented. Figure 2.6 provides the comparison of behavior of individual mortar mixes dur-
ing the compression tests while Figure 2.7 during the three-point-bending tests. Note that the
staircase character of Figures 2.7b and 2.7c is caused by the inappropriate evaluating of the dis-
placements by the measuring device used during the tests. In Figure 2.5 results for individual
tests of brick are presented.
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Figure 2.5: Individual force-displacement diagrams for compression (left) and three-point-
bending (right) tests of brick.
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Figure 2.6: Individual force-displacement diagrams for compression tests of mortars.
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Figure 2.7: Individual force-displacement diagrams for three-point-bending tests of mortars.

2.2 Experimental Testing of Masonry Piers

2.2.1 Specimen Preparation

Geometry of tested samples is described by Figure 2.8. Common fired clay bricks from Bratron-
ice brick plant with standard dimensions mentioned in Section 2.1.2.1 were used. The thickness
of bed joints was equal to 15 mm (15 mm high plastic pads were placed in the corners to main-
tain the constant joint thickness) while vertical joints were 10 mm thick. Bricks were arranged
in five layers to make a proper cross bond. The study was focused only on the influence of the
mortar in joints; the geometry, loading, boundary conditions and the masonry material (clay
bricks) were same for all tested piers. Piers were stored for 90 days in laboratory conditions at
constant temperature 20±1 ◦C and relative humidity ranging between 60 and 80 %. Two weeks
before tests 10 mm thick layers were applied on the column caps to ensure parallel surfaces
during the tests − anhydrite floor screed with 20 MPa compression strength was used for its
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easy workability and for the self-leveling ability.
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Figure 2.8: Loading of the tested piers and placement of virtual extensometers.

2.2.2 Destructive Testing

The pier loading was accomplished by means of a hydraulic accurator with 1 MN loading capac-
ity. Load was distributed through the 30 mm thick steel plates to ensure a uniform distribution
of stresses and was applied with 5 cm eccentricity. Every pier was fixed on its position using a
special steel frame that enables free rotation of pier stub in perpendicular direction from eccen-
tricity. The masonry piers were subjected to a displacement-controlled quasi-static compression
to introduce a combination of bending and compression. 1 mm/min loading rate was chosen
in order to capture the the descending part of the force-displacement diagram after the loss of
pier integrity. For measuring different displacement on the less and more loaded side pair of
extensometers was attached on each side. The measured displacement was averaged and used a
comparison with optical measurements by means of DIC, see Figure 2.12a.
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In order to capture the failure mechanisms a full-field digital image correlation (DIC) method
was employed. DIC, or better DIC-2D, can provide detailed information about the development
of in-plane deformation field, major strain localizations, and evolution of cracks. Full field mea-
surement by means of DIC allows us to track the strain-field over the region of interest (ROI) and
capture the damage initiation and progression until the complete loss of structural integrity [48].
Such strain-field measurement cannot be accomplished with ordinary extensometers or strain-
gauges attached at predescribed discrete locations.

2.3 Digital Image Correlation

2D Digital Image Correlation (DIC) method was employed for the measurement and evalueation
of the deformation fields. Such approach allowed to compare the experimentally acquired data
with the results of the FE simulations. The method is particularly suitable for capturing the
localization phenomena such as localization of plastic strains into the compliant mortar joints
or development of cracks.

DIC was firstly mentioned in the work of Yamaguchi [49] and Peters and Ranson [50], who
were among the first to introduce its principles. DIC is widely used because of its low require-
ments on equipment, easy application, wide range of measurement resolution and, above all,
high accuracy. In principle, DIC is an optical measurement based on digital image processing
and numerical computing. It directly provides information about the full-field displacement and
deformation fields by comparing the digital images of a surface texture or a stochastic pattern
applied artificially on the sample [51, 52] taken during the destructive test.

In the beginning DIC suffered from insufficient computational power and also ineffective
evaluating algorithms − these reasons led to investigating only small Regions of Interests
(ROIs) (in the order of millimeters), but in the last years efficient numerical methods [53, 54]
together with a sufficient computational power allowed to use DIC in case of macro problems,
such as formation of cracking various patterns in masonry walls [55, 56], to investigate defor-
mation of textiles [57] or fatigue failure of polymer materials [58].

In our study, we used an open source software Ncorr v1.1 [59] for the evaluation of the
displacement and deformation fields. The program was developed by Justin Blaber on Georgia
Institute of Technology and post-processing of results was carried out by Ncorr post tool [60].
Both programs operate in MATLAB [61] environment and are platform independent − able to
work under the Windows operating systems as well as Linux systems.

2.3.1 DIC principles

The main idea of DIC is to find a one-to-one correspondence between material points in the
reference and current image. This is accomplished by taking small subsections of the reference
image, called subsets, and determining their locations in the current image. For each subset,
we obtain displacement and strain information through the transformation used to match the
location of the subset in the current (deformed) image. Several subsets are selected in the
reference configuration, often with a spacing parameter to reduce computational cost (also note
that subsets typically overlap as well). The calculation output is provided in the form of a
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grid containing displacement and strain information with respect to the reference configuration.
The strain/displacement fields can be then either reduced or interpolated to form a continuous
strain/displacement field.

Subsets are essentially a group of coordinate points, the main idea of subsets in the reference
and current image is shown in Figure 2.9, where the reference image ”Ref” is denoted as and
”Cur” is the current (deformed) image.

Figure 2.9: The reference and current image, the subset’s coordinates are shown as red crosses.

It is possible to establish S as a set which contains all of the subset points

S = {(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)} , (2.7)

given as an example in Figure 2.9. The transformation of the initial reference subset points to the
current location is typically constrained to a linear, first-order displacement mapping function
and given as

x̃cur,i = xref,i + urc +
∂u

∂xrc

(xref,i − xref,c) +
∂u

∂yrc

(yref,j − yref,c),

ỹcur,j = yref,j + vrc +
∂v

∂xrc

(xref,i − xref,c) +
∂v

∂yrc

(yref,j − yref,c),

(2.8)

where (i, j) ∈ S, xref,i and yref,j are the x and y coordinates of an initial reference subset point,
xref,c and yref,c are the x and y coordinates of the center of the initial reference subset, x̃cur,i
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and ỹcur,j are the x and y coordinates of a final current subset point and ∂u/∂xrc, ∂u/∂yrc,
∂v/∂xrc, ∂v/∂yrc are displacement gradient components and u, v are translations of the center
of the subset image in the x and y directions, respectively. The subscript denotation ”rc” used in
Equation (2.8) indicates that the transformation is from the reference to the current coordinate
system.

A general form of the displacement-deformation matrix is considered as follows

p =

{
u v

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

}T

(2.9)

and the geometrical meaning of individual entries is illustrated in Figure 2.10. Any linear
combination of the 6 parameters shown in Figure 2.10 could be described by a warp function
w, which is used to describe the deformations of subset. Equation (2.8) can be also rewritten
into the matrix form

ξref,c + w(4ξref ,prc) =


xT

ref,c

yT
ref,c

1

+


1 +

∂u

∂xrc

∂u

∂yrc

urc

∂v

∂xrc

1 +
∂v

∂yrc

vrc

0 0 1

 ∗


∆xT
ref

∆yT
ref

1

 , (2.10)

where ξ is an augmented vector which contains the x and y coordinates of subset points, ∆x
and ∆y are the distances between the subset points and the center of the subset and w is a
warp function. Also it is necessary to allow the reference subset to deform within the reference
configuration, as shows Equation (2.11).

x̃ref,i = xref,i + urr +
∂u

∂xrr

(xref,i − xref,c) +
∂u

∂yrr

(yref,j − yref,c),

ỹref,j = yref,j + vrr +
∂v

∂xrr

(xref,i − xref,c) +
∂v

∂yrr

(yref,j − yref,c),

(2.11)

where x̃ref,i and ỹref,i are the x and y coordinates of the final reference subset point. The sub-
script denotation ”rr” is meant to represent the transformation from the reference coordinate
system to the reference coordinate system.

Figure 2.10: Linear transformations for subset coordinates, reproduced from [2].

The purpose of the analyzing scripts in Ncorr is to find the optimal prc when prr = 0 such
that the evaluated coordinates x̃ref,i and ỹref,j preferably match the coordinates x̃cur,i and ỹcur,j .

The next major step is to define a geometric similarity between the reference subset and the
current subset. This is done by comparing gray scale values between the reference subset points
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with the gray scale values at the final subset points. In Equations (2.12) and (2.13), there are
two metrics which are used by Ncorr, but there are also alternative equations [54].

CCC =

∑
(i,j)∈S(f(x̃ref,i, ỹref,j)− fm)(g(x̃cur,i, ỹcur,j)− gm)√∑

(i,j)∈S [f(x̃ref,i, ỹref,j)− fm]2
∑

(i,j)∈S [g(x̃cur,i, ỹcur,j)− gm]2
, (2.12)

CLS =
∑

(i,j)∈S

 f(x̃ref,i, ỹref,j)− fm√∑
(i,j)∈S [f(x̃ref,i, ỹref,j)− fm]2

− g(x̃cur,i, ỹcur,j)− gm√∑
(i,j)∈S [g(x̃cur,i, ỹcur,j)− gm]2

2

.

(2.13)
These equations, widely known as correlation criteria, involve f and g, the reference and current
image functions, or rather gray scale values corresponding to the specified (x,y) point and fm

and gm are the mean gray scale values of the reference and current subset.

fm =

∑
(i,j)∈S f(x̃ref,i, ỹref,j)

n(S)
,

gm =

∑
(i,j)∈S g(x̃cur,i, ỹcur,j)

n(S)
,

(2.14)

where n(S) is the number of elements in S.

Optimal prc is found by the use of iterative nonlinear least squares optimalization scheme
which minimizes Equation (2.13). Nonlinear optimalization scheme mainly uses the inverse
compositional Gauss-Newton method (IC-GN) which is more faster than commonly used for-
ward additive Gauss-Newton method (FA-GN) [54]. Full descriptions of these methods is com-
plex and is beyond the scope of this work.

After the evaluation of displacement field at all discrete points, the displacements are inter-
polated to obtain continuous field. Obtaining the strain field is more complex because it involves
differentiation, which is sensitive to noise. The noise, respectively noisy displacements are al-
ways presented which is caused by many effects. These are for instance small change of the
light conditions during the test, compressing methods used during the RAW to jpg conversion
or resizing of images. Noise in the displacements field magnifies the errors in the strain field.
The type of strain field calculated by Ncorr is Green-Lagrangian strain, which is obtained using
the four displacements gradients as demonstrated by the following equations:

εxx =
1

2

(
2
∂u

∂x
+

(
∂u

∂x

)2

+

(
∂v

∂x

)2
)
,

εxy =
1

2

(
∂u

∂y
+
∂v

∂x
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

)
,

εyy =
1

2

(
2
∂u

∂y
+

(
∂u

∂y

)2

+

(
∂v

∂y

)2
)
.

(2.15)

The displacement gradients are directly obtained thought the IC-GN scheme, but the noisy
values have to be smoothed before calculating the strain field. Idea implemented in the Ncorr is
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to evaluate the displacement gradients directly from the displacement field according to Equa-
tions (2.15) [62], ignoring the values provided by IC-GN scheme.

The DIC procedure basically consists of the following steps:

1. Preparation of stochastic contrast pattern on the investigated column surface.

2. Taking photos of the investigated surface with a digital camera during the destructive
experiment.

3. Processing and adjusting the photos.

4. Evaluating the photos by the DIC software to obtain full-field strains.

2.3.2 Contrast Pattern

The DIC technique relies on a contrasting speckle pattern applied on the surface of the test
specimen [52, 63, 64, 65]. This pattern can be in the form of a natural texture or it can be
artificially applied. The pattern quality has a dominant influence on the spatial resolution and
accuracy of DIC results. In general, to achieve effective correlation, the pattern must be random,
isotropic, i.e. must not exhibit a bias to one orientation, and highly contrasting, i.e. must show
dark blacks and bright whites [66]. In addition to the above requirements, speckles should be
neither too small nor too large. If the pattern is too large, we may find that certain subsets
are just a black or white fields. This does not allow to make a good match [52]. Such issue
could be solved by increasing the subset size, but at the cost of the spatial resolution. On the
other hand, too small speckles can cause the aliasing effect resulting in images that often show
a pronounced Moiré pattern in the measurement results [66]. As a rule, speckles should be 3-8
pixels in size to achieve effective correlation [67].

In our case a common white wall-paint was used to create a white background. After drying
of the white paint black dots were applied using spray. It is necessary to have the white pattern
sufficiently bonded to the surface and keep the paint layer thin enough to see the initial cracking
− this is not ensured for example by synthetic varnishes or enamels [64]. Final pattern with a
real scale is shown in Figure 2.11.

Figure 2.11: Artificial stochastic contrast pattern.
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2.3.3 Acquisition of Input Images

For purpose of image acquisition a high-resolution digital DSLR camera was used − Canon
EOS 70D equipped with EF-S 18-135mm f/3.5-5.6 IS STM zoom lens. Canon 70D has a APS-
C sensor with crop factor 1.6 and its size is 22.5 × 15.0 mm with effective 20.2 MP resolution,
yielding the maximum photo size 5472 × 3648 px. Camera was fixed on a tripod in 1 m
distance. Very high attention was paid to the placement of the camera.

To avoid distortion of results, the camera had to be placed parallel to the specimen surface
and in line with the specimen axes. The distance was chosen in such a way to minimalize the
lens distortion effect [54] − 55 mm focal length was set (55 × 1.6 = 88 mm equal to full-
frame). The light sensitivity of the camera chip, ISO number, was manually set to 100 to avoid
excessive noise. Perfect light conditions (ensured by the pair of halogen lights, with power of
250 W of each) allowed to use short exposure time− 1/125 and aperture number was chosen to
obtain proper exposition of images − f/8.0. These settings were kept constant for all images in
a series. For each specimen one reference image with a real scale was shot prior to its loading.
Than 5-second time interval was set equally for all tested specimens and the start of photo-
sequence was synchronized with the start of loading to proper match of force-displacement
diagrams measured by hydraulic accurator. Totally 210 − 260 images of one pier were taken to
document the whole process of pier loading until its complete failure. RAW file format of files
was chosen to obtain uncompressed quality of digital pictures.

(a) Contrast pattern and attached extensometers (b) Experiment setup with DSLR camera

Figure 2.12: Experimental testing of columns.
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2.3.4 Processing of Acquired Images

The recorded digital images in RAW (.CR2) format were processed in Adobe Photoshop Light-
room 5 64-bit software. Firstly, transformation into 8-bit grey scale was done and than contrast,
exposition and tint parameters were slightly changed to obtain the best possible quality of con-
trast pattern. The last step of processing consisted of cropping the images to save the computer
memory. The changed values were saved and applied on all pictures from one batch. Export
into .jpg format was carried out by the same software, with resizing at the same time because of
insufficient computational power of the available computer. Bigger size of photos, or more pre-
cisely their high resolution, results in higher computational cost [54]. The original size of photos
was 3648× 5472 px, cropped images 3168× 4752 px and resized photos were in scale of 50 %,
1584 × 2376 px and the resulting DIC real scale resolution was equal to 0.202 mm/pixel. Ex-
port was done with 60 % quality of .jpg compression. The amount of compression is usually
the main source of low precision or rather low sensitivity of DIC in comparison with ordinary
contact measurements. The demonstration of image compression is provided in Figure 2.13. In
particular the contrast between very low 5 %, used 60 % and very similar 100 % compression.
It is obvious that during the high level of compression an unadvisable pixelation effect occurs
− pixels are grouped into periodic matrices, which is unsuitable for the needs of DIC. The file
size of the exported images was around 2.70 MB per single file.

(a) 5% (b) 60% (c) 100%

Figure 2.13: Comparison of .jpg compression ratio.

2.3.5 DIC Processing

DIC processing was carried out by Ncorr program to which the author provides a full man-
ual [68], but at least the generalized workflow of program is mentioned in the present thesis.
Main steps of DIC analysis in Ncorr consist of:

1. Setting of Reference Image
Undeformed, reference image has to be loaded first. Ncorr provides two ways how to set
the image. One is through the Ncorr GUI by choosing the picture as a file, the other way
is directly in MATLAB terminal by loading the matrix of type doubles, which contains
gray-scale values.
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2. Setting of Current Images
Current or deformed images are loaded next. Ncorr enables two ways of loading the
images. Options of ”Load All” or ”Load Lazy”. Loading of all images can be problematic
when a large number of images needs to be processed, because all of these loaded images
are stored in the RAM memory. Lazy loading stores only the path to the folder with
images and during the DIC analysis images are loaded one by one. Program also needs
to have an order in the batch of files, so it is recommended to rename the images into the
following format:

name #.ext ,

where name is the custom name of the image set and # is the number of loading step
associated with the image and ext is an image extension. Ncorr supports .jpg, .tif , .png
and .bmp files. Overall main program menu window is shown in Figure 2.14.

Figure 2.14: Main menu window in Ncorr.

3. Setting Region of Interest
There are three ways how to set ROI: in Ncorr menu by loading the ROI image, to draw it
directly in Ncorr GUI environment or by loading the matrix of logical values of the same
size as the reference image.

ROI image is the image processed in some image processing software − desirable ROI is
represented by white color (255 grayscale value) and unclaimed area is black (0). Draw-
ing in GUI is simple by putting the polygon on the desired area.

4. Setting DIC Parameters
The main evaluating algorithm in Ncorr is based on the Bi-Pan’s RG-DIC framework (for
more information see [2, 54]) and several key parameters of DIC analysis have to be set
up, example of window with settings is provided in Figure 2.15.
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Figure 2.15: Window with settings of DIC in Ncorr.

Subset Options are the main components of DIC analysis − subset size (subset radius)
and subset spacing. The main idea is to select smallest subset as it possible to obtain non-
noisy displacement data, but too small subsets in high-resolution ROI leads to demanding
calculations, which require very high computational power.

Iterative Solver Option defines the criteria to terminate iterations. Two criterions are used
− norm of the difference vector or maximal number of iterations. Increasing the norm or
reducing the number of iteration number can lead to much faster analysis, but result in
less precise results of DIC.

Multithreading Options allow Ncorr to use more than one CPU core to speed up compu-
tation process.

5. DIC Analysis
The important option is seed placement. Number of seeds depends on the available com-
putational cores set up in previous step. Seeds provide the initial guesses of the RG-DIC
analysis and divide the ROI into partitions to parallel computation of each partition. Seeds
have to be set in a way to divide the ROI into the partitions of more or less same size.
After setting the seeds is possible to run the RG-DIC analysis. Optimal setting of seeds
is shown in Figure 2.16

6. Formatting Displacements
In Formatting Displacements menu preview of calculated displacements are provided and
it is possible to set many options to provided results.

At first the relationship between the pixel scale and real scale by choosing the Get Unit
Conversion button can be set. It is important to get absolute displacement in the real scale,
not only relative in pixels.

Formatting Options is a filter with possibility to cut-off noisy, low or very high displace-
ments. This filter can be applied to all images.
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Figure 2.16: Optimal distribution of seeds (green dots) in Ncorr.

Lens Distortion Options is the option to correct the image for errors caused by lens dis-
tortion effect. The correction algorithm assumes the distortion center in the center of
image.

Example of displacement settings dialogue window is shown in Figure 2.17.

Figure 2.17: Displacement formatting window in Ncorr.

7. Strain Analysis
As mentioned above, strains in Ncorr are calculated from the displacement data based on
square plane fit to a local group of data points (circles). Then the averaged displacement
gradients are used to calculate the Green-Lagrangian strains.
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Figure 2.18: Strain Analysis window in Ncorr.

Strain Options − strain radius is an option to set up the radius of the circle which selects
the group of points to fit the plane to. This selection is similar to subset radius setup,
the smaller radius leads to obtain non-noisy strain data. Example of calculated strains is
demonstrated in Figure 2.18.

8. Plotting
At this step, displacements together with strains have been calculated. Plotting menu
provides possibility to use the calculated deformations / strains color map with various
transparency together with the analyzed image. Also provides the option of showing the
scale, axes and scalebar on the images. Eventually, the figure can be exported, but the
software lacks some useful abilities such as saving the set options for further export or
mass exporting of all images in the series. To that purpose the Ncorr post tool has been
developed [69].

Plotting menu dialogue is shown in Figure 2.19.
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Figure 2.19: Ncorr plotting options.

2.3.5.1 Ncorr post

Ncorr post is opensource DIC post-processing tool developed by Václav Nežerka at the De-
partment of Mechanics, Faculty of Civil Engineering, CTU in Prague. Ncorr post operates
in MATLAB environment as well as Ncorr and is capable of loading the handles ncorr data
structure which contains the strain and displacement data.

Ncorr post provides the same abilities as the post-processing menu in Ncorr, namely scaling
the displacements and adjusting the graphical output plots, but adds new features such as placing
virtual extensometers and plotting the figure of displacement or putting the arrows of magnitude
and orientation of principal strains instead of color map to the image. Main advantage of this
tool is possibility to save the current project with all settings to be loaded in future or the
indispensable ability to apply setting to all images in a series with mass exporting of all images
or direct video export. The main application window appears in Figure 2.20. Figure 2.21
demonstrates the plot of displacement obtained by calculations in Ncorr post and Figure 2.22
provides an example of arrow mode to represent principal strains.



EXPERIMENTAL ANALYSIS 33

Figure 2.20: Main window of Ncorr post application.

Figure 2.21: Example of virtual extensometers data plotting provided by Ncorr post.
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Figure 2.22: Direction and magnitude of principal strains; L-SCB pier in 410 seconds of the
test.

2.3.6 Results of DIC

The capabilities of DIC are presented in this section and the development of maximum prin-
cipal strains was chosen for the illustration. The presented sequence of images illustrates the
development of principal tensile strains and clearly demonstrates the strain localization to the
compliant joints, followed by the development of cracks passing through bricks.
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Figure 2.23: Time step: 0s (left) 200s (right).

Figure 2.24: Time step: 300s (left) 400s (right).
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Figure 2.25: Time step: 500s (left) 600s (right).

Figure 2.26: Time step: 650s (left) 700s (right).
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Figure 2.27: Time step: 750s (left) 790s (right).



Chapter 3

Numerical Simulations

The traditional design of masonry structures was based on empirical formulas and experience
of masons, while nowadays it is sometimes replaced by a numerical approach, usually the Fi-
nite Element Method (FEM) [70]. We employed numerical simulations to find the optimum
properties of bed joint mortars used in masonry piers exposed to a combination of compression
and bending moment, which are often present in masonry load-bearing elements. This chapter
is focused on the description of well-known equations of the theory of elasticity, brief expla-
nation of FEM history, and FEM principles. In the second part of the chapter, our approach to
numerical modeling is described.

3.1 Summary of the Theory of Elasticity

The fundamental assumptions of linear elasticity are:

• the body deforms reversibly, after unloading the solid returns to its original state (shape),

• the strain in the specimen depends only on the applied stress, it does not depend on the
previous history of loading, neither the rate of loading,

• stress is a linear function of strain,

• heating the homogenous and isotropic material will result in the volumetric change of
body without change in shape.

In the engineering terminology the limit state of elasticity of the body (in according to
validity of Hookes’s law) is such a state above which irreversible deformations occur. The
summary of the fundamental elasticity equations is summarized in the diagram provided next.

3.1.1 Kinematic Equations

3.1.1.1 Displacements

A displacement field is an assignment of displacement vectors for all points in a region or body
that is displaced from one state to another. A displacement vector specifies the position of a
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displacements 
ui (u1, u2, u3) 

strains 
εij i=1, 2, 3; j=1, 2, 3 

stresses 
σij  i=1, 2, 3; j=1, 2, 3 

body forces 
bi (b1, b2, b3) 

kinematic equations 
ε = ∂u 

constitutive equations
σ = Dε

ε = Cσ

equilibrium equations 
∂Tσ+b = 0

Figure 3.1: Governing equations of elasticity, reproduced from [3].

point or a particle in reference to an origin or to a previous position. The displacements at each
point is described by three components (ux, uy, uz), all of them dependent on the position in
the Cartesian coordinate system (x1, x2, x3). In a matrix notation, the displacement field can be
arranged in a vector and written as

u(x) =


ux(x1, x2, x3)
uy(x1, x2, x3)
uz(x1, x2, x3)

 . (3.1)

3.1.1.2 Strains

Strains describe the deformation of a rigid body. Strains can be also classified as normal strain
- acting perpendicular to the face of element or shear strain - acting along the face of element.
For an isotropic material normal stresses will cause normal strains. Figure 3.2 presents the
meaning of individual deformations on a two-dimensional infinitesimal rectangular material
element with dimensions dx × dy, which after deformation takes the form of a rhombus. This
transformation relies on the theory of infinitesimal strain or also so-called engineering strain.

Based on the Pythagoras’s theorem it is possible to calculate lenght(ab) as follows

lenght(ab) =

√(
dx+

∂ux

∂x
∂x

)2

+

(
∂uy

∂x
∂x

)2

= dx

√
1 + 2

∂ux

∂x
+

(
∂ux

∂x

)2

+

(
∂uy

∂x

)2

. (3.2)

Because of very small displacement gradients the squares of the derivatives are negligible,
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Figure 3.2: Two-dimensional geometric deformation of an infinitesimal material element, re-
produced from [4].

√
2
∂ux

∂x
≈ ∂ux

∂x
and thus is possible to simplify Equation (3.2) into

lenght(ab) ≈ dx+
∂ux

∂x
dx , (3.3)

than is the normal strain in the x-direction defined as

εxx =
lenght(ab)− lenght(AB)

lenght(AB)
=
dx+

∂ux

∂x
dx− dx

dx
=
∂ux

∂x
. (3.4)

Similarly the normal strains in y-direction and z-direction can be expressed in the following
form

εyy =
∂uy

∂y
, εzz =

∂uz

∂z
. (3.5)

The engineering shear strain γxy represents the changes of angles between lines AC and AB
as the material distorts in response to shear stress. To define shear strains it is necessary to look
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at two directions that form the plane that undergoes shear distortion. Therefore,

γxy = α + β (3.6)

and from the geometry provided by Figure 3.2 we obtain

tan α =

∂uy

∂x
dx

dx+
∂ux

∂x
dx

=

∂uy

∂x

1 +
∂ux

∂x

,

tan β =

∂ux

∂y
dy

dy +
∂uy

∂y
dy

=

∂ux

∂y

1 +
∂uy

∂y

.

(3.7)

We assume that strains are infinitesimal. Consequently

∂ux

∂x
� 1,

∂uy

∂y
� 1 . (3.8)

For small angle changes it is possible to consider

tanα ≈ α ≈ ∂ux

∂x
, tan β ≈ β ≈ ∂uy

∂y
. (3.9)

Introducing simplifications (3.8) and (3.9) into Equation (3.7) yields

γxy = α + β =
∂ux

∂x
+
∂uy

∂y
(3.10)

and for other two distortions the same reasoning can be used so that

γyz = γzy =
∂uy

∂z
+
∂uz

∂y
, γzx = γxz =

∂uz

∂x
+
∂ux

∂z
. (3.11)

The strain is a second order tensor1 and components of the infinitesimal strains can then be
arranged in the matrix form as follows

ε =



∂ux

∂x

1

2

(
∂ux

∂y
+
∂uy

∂x

)
1

2

(
∂ux

∂z
+
∂uz

∂x

)
1

2

(
∂ux

∂y
+
∂uy

∂x

)
∂uy

∂y

1

2

(
∂uy

∂z
+
∂uz

∂y

)
1

2

(
∂ux

∂z
+
∂uz

∂x

)
1

2

(
∂uy

∂z
+
∂uz

∂y

)
∂uz

∂z


. (3.12)

In the tensorial notation shear strains (distortions) are expressed as halves of the engineering
strains. Individual components of stress and strain tensors can be for convenience arranged in a

1Tensors are used to represent correspondences between sets of geometric vectors. Because they express a
relationship between vectors, tensors themselves must be independent of a particular choice of coordinate system.
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pseudovector form and the ordering of elements is basically arbitrary, but conventional is order
(1,1), (2,2), (3,3), (2,3), (1,3), (1,2) [71] and this arrangement is the so-called Voigt notation.
The strain pseudovector can be also written in terms of the displacement vector and proper
operator as

ε = ∂u,



εxx

εyy

εzz

γyz

γxz

γxy


=



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0




ux

uy

uz

 .
(3.13)

3.1.2 Static Equations

The main goal of stress analysis is determining the variation of stress. The components are
functions of position within the interior of a body. Combined stresses cannot be described by
a single vector. Even if the material is stressed in the same way throughout the volume of the
body, the stress across any imaginary surface will depend on the orientation of that surface. The
force equilibrium of an infinitesimal cube yields the following equations

∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ bx = 0 ,

∂τxy

∂x
+
∂σyy

∂y
+
∂τzy

∂z
+ by = 0 ,

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
+ bz = 0 ,

(3.14)

where bi are body forces. The equilibrium can be expressed in the matrix form as

∂

∂x
0 0 0

∂

∂z

∂

∂y

0
∂

∂y
0

∂

∂z
0

∂

∂x

0 0
∂

∂z

∂

∂y

∂

∂x
0





σxx

σyy

σzz

τyz

τxz

τxy


+


bx

by

bz

 =


0
0
0

 . (3.15)

Stress tensor, completely describes the stress state of a continuum body. The stress tensor can
be represented in any chosen Cartesian coordinate system by the 3×3 matrix of real numbers in
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the following form:

σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 . (3.16)

By Newton’s laws of motion, any external forces being applied to such a system must be bal-
anced by internal reaction forces [72]. Equilibrium of the stress and surface traction expressed
by Cauchy’s formula requests the equilibrium of the external traction forces with internal stress.
The traction vector t is associated with any plane characterized by its normal n. This is called
stress on the surface of the body and it is defined by following equation

t = lim
∆A→0

∆F

∆A
, (3.17)

where ∆F is external force and ∆A is the magnitude of the area on which external force acts.
Traction is a force vector and in 3-D is completely defined by three components associated with
the coordinate planes:

t(x) =


σxx

τxy

τxz

 (3.18)

and for an arbitrary normal plane n it holds that

t(n) = t(x)nx + t(y)ny + t(z)nz , (3.19)

which can be written in a compact form as

t = σn , (3.20)

or in a matrix form as follows
t(x)

t(y)

t(z)

 =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


nx

ny

nz

 . (3.21)

The principle of conservation of angular momentum implies that the stress tensor is symmetric,
that leads to equality of following identities: τxy = τyx, τxz = τzx and τyz = τzy. Therefore,
the stress state of the medium at any point and instant can be specified by only six independent
parameters, rather than nine. Elements σxx, σyy, σzz are called the orthogonal normal stresses
and τxy, τxz, τyz the orthogonal shear stresses.

3.1.2.1 Principal Stresses

Rotating the compounds of stresses around the axis provides different values of stress for dif-
ferent angles. However, the principal stresses, being invariants independent of the coordinate
system, provide the true stress-state measure. As mentioned in Equation (3.16), stress tensor σ
can be rewritten into the following form

σ = σij =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 , (3.22)
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where the element of the ith row and jth column represents the stress on the ith face in the
jth direction. The principal stress values can be then calculated as the eigenvalues of the 3×3
matrix: ∣∣∣∣∣∣

σxx − λ σxy σxz

σyx σyy − λ σyz
σzx σzy σzz − λ

∣∣∣∣∣∣ = 0 . (3.23)

The computed values λ are equal to the principal values of stress tensor and the Equa-
tion (3.23) can be expanded to

(σxx − λ)
[
(σyy − λ)(σzz − λ)− σ2

yz

]
− σxy

[
σxy(σzz − λ)− σyzσxz

]
+

σxz

[
σxyσyz − (σyy − λ)σxz

]
= 0

(3.24)

and after expansion

λ3 − (σxx + σyy + σzz)λ
2 + (σxxσyy + σyyσzz + σzzσxx − σ2

xy − σ2
xz − σ2

yz)λ−
(σxxσyyσzz − σxxσ

2
yz − σyyσ

2
xz − σzzσ

2
xy + 2σxyσxzσyz) = 0 .

(3.25)

Equation (3.25) can be rewritten into the following form

λ3 − I1λ
2 + I2λ− I3 = 0 , (3.26)

where invariants I1, I2, I3 are defined as:

I1 = σxx + σyy + σzz ,

I2 = σxxσyy + σyyσzz + σzzσxx − σ2
xy − σ2

xz − σ2
yz ,

I3 = σxxσyyσzz − σxxσ
2
yz − σyyσ

2
xz − σzzσ

2
xy + 2σxyσxzσyz ,

(3.27)

which can be alternatively written as:

I1 = tr(σ) ,

I2 =

∣∣∣∣σxx σxy

σxy σyy

∣∣∣∣+

∣∣∣∣σxx σxz

σxz σzz

∣∣∣∣+

∣∣∣∣σyy σyz

σyz σzz

∣∣∣∣ ,
I3 = det(σ) .

(3.28)

For the sake of material modeling it is convenient to introduce two quantities, Q and R

Q =
3I2 − I2

1

9
, R =

2I3
1 − 9I1I2 + 27I3

54
, (3.29)

so that so called Lode angle θ can be expressed as

θ = cos−1

(
R√
−Q3

)
. (3.30)

The values of principal stresses being the eigenvalues of the matrix representing the stress tensor
as defined in Equation (3.22) can be found as

λ1 = 2
√
−Q cos

(
θ

3

)
+

1

3
I1 ,

λ2 = 2
√
−Q cos

(
θ + 2π

3

)
+

1

3
I1 ,

λ3 = 2
√
−Q cos

(
θ + 4π

3

)
+

1

3
I1 .

(3.31)
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3.1.3 Constitutive Equations

In previous sections the relationships between kinematics (geometry) and statics equilibrium of
body were explained, but these equations do not provide any description of the real material.
The kinematic equations relate strains to displacements and the static equations relate stresses
within a rigid body to the external forces. The six constitutive equations relate the strains to
stresses.

Isotropic elastic material exhibits the same properties in all directions and the response of
the material in terms of stress to the applied strains can be be described by the generalized form
of Hooke’s law:

σ = Dε, (3.32)

where D is the stiffness matrix of the isotropic material. Based on the previous statements it
can be assumed that D contains 81 independents components. However, since the stress and
strain tensors are symmetric, D has to be also symmetric. These symmetries reduce the number
of D components to 36 and the following equation

σxx

σyy

σzz

τyz

τxz

τxy


=


D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66





εxx

εyy

εzz

γyz

γxz

γxy


(3.33)

demonstrates that the D matrix is also symmetric, which leads only 21 independent elements.

In the simplest case of the isotropic elastic material having the same stiffness in all direc-
tions, the D matrix can be further reduced, because here are only two independent material
constants, e.g. Young’s modulus (E) and Poisson’s ratio (ν) and from these two elements,
so-called shear modulus (G) can be calculated as

G =
E

2(1 + ν)
. (3.34)

A uniaxially loaded body by the stress σxx will result in elongation inversely proportional
to applied stress and Young’s modulus εxx = σxx/E in the direction of x-axis and in other two
orthogonal axis y and z it will exhibit contraction εyy = εzz = −νεxx = −νσxx/E. In a general
stress-state the other normal strain components can be obtained analogically

εxx =
1

E
(σxx − νσyy − νσzz),

εyy =
1

E
(−νσxx + σyy − νσzz),

εzz =
1

E
(−νσxx − νσyy + σzz).

(3.35)

In case of isotropic material the shear deformations are dependent on shear stresses and shear
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modulus

γyz =
τyz

G
=

2(1 + ν)

E
τyz,

γxz =
τxz

G
=

2(1 + ν)

E
τxz,

γxy =
τxy

G
=

2(1 + ν)

E
τxy.

(3.36)

The six constitutive equations for isotropic materials can be written in the matrix form as

εxx

εyy

εzz

γyz

γxz

γxy


=

1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)





σxx

σyy

σzz

τyz

τxz

τxy


, (3.37)

or in compact form as
ε = Cσ, (3.38)

where C represents the elastic compliance matrix. By inversion of the compliance matrix obtain
the elastic isotropic material stiffness matrix

D =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 0.5− ν 0 0
0 0 0 0 0.5− ν 0
0 0 0 0 0 0.5− ν

 . (3.39)

3.2 Introduction to FEM

The origin of FEM can be traced back to the first half of 20th century. A paper by R. L. Courant,
who used triangular elements with variational principles to solve vibration problems [73, 74],
is considered to be the first FEM reference. Since then many researchers have contributed to
develop the method as we know it nowadays, namely M. J. Turner, R. W. Clough, E. L. Wilson,
K. J. Bathe, J. H. Argyris, T. Belytschko and O. Zienkiewicz. In the late 1960s the interest
in FEM grew rapidly and Edward L. Wilson did a first widely accepted computer package for
structural analysis. Than research continued mainly at NASA, and their engineers founded a
project to develop a program for general-purpose finite element analysis, NASTRAN, firstly
mainly for needs of aeronautics.

At nearly the same time, a finite element program at Westinghouse Electronics Corp. was
developed and primarily used for the analysis of nuclear reactors. This software was released
to market in 1969 and sold under the commercial name ANSYS. Many non-commercial and
open-source software packages were also developed, for example OOFEM [75] by professor
Bořek Patzák at the Department of Mechanics, Faculty of Civil Engineering, CTU in Prague.
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FEM computations are indispensable in today’s world and needed almost in all scientific ar-
eas like structural mechanics, stress and thermal analysis, seismic analysis, analysis of dynamics
problems, fluid and flow analysis, electromagnetic field study but also for instance metrology
models for weather prediction or analysis of surgical procedures and many others fields of in-
terest.

3.2.1 Principle of FEM

FE method was originally developed as matrix method of structural analysis. FEM subdivides
the whole domain into finite number of simple parts, called elements, and these elements are
connected at points called nodes. This method was first used for discrete structures only - trusses
and frames and later it was extended for 2D/3D continuum.

FEM is considered to be an extension of Rayleigh-Ritz method, eliminating the difficulty
of dealing with a large polynomial representing a suitable displacement field valid over the
entire structure [76]. Cornerstone of this method consists of choosing a displacement field over
the entire component, usually in the form of a polynomial function, and evaluating unknown
coefficients of the polynomial for minimum potential energy by Lagrangian principle: Of all
kinematically admissible states of the elastic body takes one that gives the potential energy
minimum of the system: Π = min. Total potential energy of deformation Π consists of a sum
of potential energies of internal forces Ei and potential energy of external forces Ee.

Ei =

∫
Ω

1

2
εTσdΩ , (3.40)

Ee = −
∫

Ω

dTX̄dΩ−
∫

Γt

dTp̄dΓ , (3.41)

where Ω is a volume of the body, ε is array of strains, σ is array of stresses, d is a vector of
displacements, X̄ is a vector of body forces and p̄ is the vector of distributed forces acting on
the boundary Γt of the body. Total potential energy of deformation is the

Π = Ei + Ee . (3.42)

The minimum of the potential energy is expressed by means of functional δΠ, which must be
equal to zero as declared by the following equation

δΠ =

∫
Ω

δεT δW

δε︸︷︷︸
σ

dΩ−
∫

Ω

δdTX̄dΩ−
∫

Γt

δdTp̄dΓ = 0 . (3.43)

It is necessary to note that kinematically admissible displacement field must be continuous,
must have piecewise continuous derivatives throughout the entire domain and must comply with
kinematic boundary conditions on the boundary Γt [77]. As the result an approximated solution
to the boundary value problem for partial differential equations is obtained.

The theory related to FEM is in detail discussed in the author’s bachelor thesis [3], where a
particular attention devoted to:
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• division elements into groups: Discrete 1D elements and continuum 2D and 3D elements,

• classification of elements: Simplex, Complex and Multiplex,

• elements aspect ratio,

• inter-element compatibility.

3.2.2 Convergence Conditions

While the approximation function is chosen to represent the displacement field over the entire
element, several convergence criterions should be ensured:

1. the function should be continuous and differentiable (to obtain e.g. strains) within the
element,

2. the displacement polynomial should include constant term, representing e.g. rigid body
displacement in solid mechanics,

3. the polynomial should include linear terms, which on differentiation give constant terms,

4. compatibility of the displacement and its derivatives, up to the required order, must be
satisfied across inter-element boundaries. Otherwise the displacement solution may result
in separated or overlapped inter-element boundaries when the displacement patterns of
deformed elements with a common boundary are plotted separately.

3.2.3 Linearity / Nonlinearity

In the previous Section 3.1 a linear relationship between stress or strain and displacement was
explained. Linear response to loading represents the most simple constitutive behavior but in
a reality almost all materials exhibit nonlinear characteristics even before reaching the elastic
limit defined by Hooke’s law. Other nonlinearities could be characterized by slight geometrical
inhomogeneities and imperfections− this variation is named as geometrical nonlinearity. When
the stress-strain diagram exhibits nonlinear relationship, it is possible to consider that in the
every load step the structural stiffness changes too.

In nonlinear structural analysis the following consequences have to be recognized:

• the principle of superposition cannot be applied, results of several load case cannot be
combined or scaled too,

• loading history cannot be neglected,

• the initial stress-state, e.g. in concrete residual stresses from shrinkage, must be also
important.

In the nonlinear FE analysis the applied load is divided into small load increment steps
because the relationship between global vector of nodal forces equivalent stresses acting in the
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elements fint and nodal displacements d is nonlinear. We assume that discretized weak form of
the governing equations is

fint = fext . (3.44)

Equation (3.44) can be rewritten in the following form

Kd = fext , (3.45)

where K is the stiffness matrix, d is an array of nodal displacement values and fext is a vector
of nodal loads representing surface and volume forces. Where the matrix of internal forces, fint,
is a function of nodal displacements, denoted d̄, and these have to be found in order to fulfil the
condition

fint(d̄) = fext . (3.46)

The task is solved step by step in small increments. Initial solution in step t is known, for
example from the previous calculation or it is represented initial (unloaded) balanced state as

fint(d) = f̄ext (3.47)

and after incremental change of load (load controlled simulations) we can rewrite the Equa-
tion (3.47) into following form

fint(d + ∆d) = f̄ext + ∆fext . (3.48)

The principal task is to calculate the vector ∆d to meet (at least approximately) condition (3.48).
The values of f̄ext +∆fext are known, because the load increment is known. Problem is that the
vector of internal forces fint cannot be found analytically because of nonlinear dependence fint

on d.

There are several methods developed to solve the non-linear system equations, and the fol-
lowing three are among the most frequently used:

1. incremental solution without iterations (Euler method),

2. iterative solution based on the Newton-Raphson method,

3. other iterative methods, such as BFGS (Broyden-Fletcher-Goldfarb-Shann).

The further text will be focused on the deeper explanation of the Newton-Raphson method
since it was used in our simulations. The emphasis will be placed to describe difference between
normal Newton-Raphson method and its modified form. Developing of this method is attributed
to Isaac Newton (1643-1727) and Joseph Raphson (1648-1715).

Newton-Raphson method (NR) sometimes so-called tangent method is one of the most used
numerical methods to solve the systems of nonlinear equations. NR is also referred to as method
of tangents, because the solution of the general equation f(x) = 0 is sought using differentiation
of original function f(x). Using the incremental step-by-step analysis it is possible to rewrite
equation (3.48) into following form

K(d)∆d = f̄ext − fint(d) , (3.49)

where K(d) is the stiffness matrix dependent on the loading increment of deformation, d are
initial deformations, obtained in the previous step of calculation. The difference between values
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f̄ext and fint(d) represents out-of-balance forces due to the load increment. The stiffness matrix
K is highly dependent on d, but in one incremental step we assume it as a linear problem. The
stiffness matrix is calculated based on the value of d which is connected with nonlinearity of
internal forces and it can be expressed by following equation

fint(αd) 6= αfint(d) , (3.50)

where α is an arbitrary constant. The nonlinearity can be also illustrated on the stiffness matrix
relationship before and after the load step

K(d) 6= K(d + ∆d) . (3.51)

The main difference between ordinary Newton-Raphson and Modified Newton-Raphson
(MNR) method is the stiffness matrix re-calculation. In normal NR the tangential K matrix is
updated in every iteration, but in the MNR it is updated only in each load-step. Three iterations
of one time-step and difference between the methods is illustrated in Figures 3.3 and 3.4.
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Figure 3.3: Illustration of Newton-Raphson method.

Based on the provided figures the reassigned values are: f̄
(n,1)
ext , f̄

(n,2)
ext , f̄

(n,3)
ext , ... and d(n,1),

d(n,2), d(n,3), ... needs to be solved to satisfy the Equation (3.47), which can be rewritten with
indexes as fint(d

(n)) = f̄
(n)
ext , n = 1, 2, 3, ... . Where n denotes the number of solved load-step.
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Figure 3.4: Illustration of Modified Newton-Raphson method.

In summary NR iteration algorithm can be written as

K(n,i−1)δd(n,i) = f̄
(n)
ext − f̄

(n,i−1)
int

d(n,i) = d(n,i−1) + δd(n,i)

}
i = 1, 2, 3, ... (3.52)

and for MNR as
K(n,0)δd(n,i) = f̄

(n)
ext − f̄

(n,i−1)
int

d(n,i) = d(n,i−1) + δd(n,i)

}
i = 1, 2, 3, ... , (3.53)

where i represents number in sequence of iteration. NR method converges in smaller amount of
steps, compared to MNR, but the recalculation of stiffness is required, increasing the computa-
tional cost. Therefore, it cannot be concluded which of the two methods is generally faster.

For every iterative solution strategy, it is necessary to select suitable convergence criteria
(preset tolerances for reaching equilibrium) for the termination of the iteration process. These
criteria, or only a single one criterion, have to be set up in regard to reach effective solution,
because too tight convergence tolerances may lead to unjustified increase of computational cost
spent to arrive at the results of superfluous accuracy.

The corresponding criterions are:



NUMERICAL SIMULATIONS 52

1. Displacement error tolerance: tolerance for the change of displacement increment norm
εD. ∥∥∆d(i)

∥∥
2

‖t+∆td‖2

≤ εD (3.54)

2. Out-of-balanced forces tolerance: tolerance for the change of out-of-balance force norm
εF . ∥∥∥t+∆tfext − t+∆tf

(i)
int

∥∥∥
2

‖t+∆tfext − tfint‖2

≤ εF (3.55)

3. Energy error tolerance: tolerance of the change of internal energy εE .

∆d(i)T ·
∥∥∥t+∆tfext − t+∆tf

(i−1)
int

∥∥∥
2

∆d(1)T · ‖t+∆tfext − tfint‖2

≤ εE (3.56)

Many iterative solvers uses as default tolerance setting 0.01 for all criterions, but the value
of this tolerance depends on the required accuracy of the calculation. In the majority of modern
FE computer codes the maximum number of iterations is set up by the user.

3.3 Numerical Modeling

To provide reliable results from numerical simulations, the selected computational model has
to be supported by proper material model, which concisely describes the material constitutive
behavior. Our approach to verification was carried out through the comparison of failure modes
and crack patterns with experimentally obtained data − DIC. According to the studies by Zhou
et al. [78] and Wawrzynek and Cincio [79] isotropic damage-plastic models can provide a proper
description of masonry response subjected to a mechanical loading. We used material model
implemented in OOFEM, developed by Jirásek and Grassl [80]. The mesh generation was
accomplished using the open-source platform Salome [81], boundary conditions were applied
through MATLAB scripts, calculations were done by OOFEM, post-processing of results and
plotting force-displacements diagrams was accomplished in MATLAB and graphical results
were rendered in the open-source tool Paraview [82].

The following section will provide detailed information about the material model, process
of obtaining the basic material parameters and steps of numerical modeling.

3.3.1 Material Model

The proposed material model was primarily developed for the description of concrete failure
behavior subjected to general triaxial stress, but our results indicate that it can be successfully
used for the prediction of constitutive behavior for lime-based mortars and clay bricks. The
stress-strain law provided by model can be written in following form

σ = (1− ω)De : (ε− εp) , (3.57)
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where σ is the stress tensor, ω is a scalar damage parameter describing the amount of isotropic
damage [83], De is the elastic stiffness tensor, ε is the total strain and εp is the plastic strain.
The plastic part of the model is dependent on the effective stress level and the criterion for the
onset of the plastic deformation is defined by the three-invariant yield condition, non-associated
flow rule and the evolution a pressure-dependent law for hardening.

For a proper description of the material behavior it is necessary to ensure mesh-size-independent
softening. The localized part of strain is in the model transformed into an equivalent crack open-
ing after it reaches the peak of the stress-strain diagram. The fracturing strain is depended on
the element size obtained by projecting the element onto the direction of the maximum princi-
pal strain. Crack opening can be controlled by Gf parameter, which is called fracture energy
and has a physical meaning of energy dissipated by a crack developing over a unit area of the
material.

3.3.1.1 Identification of Material Model Parameters

In order to ensure satisfactory results it was necessary to supply the material model with proper
material parameters, namely: tensile strength − ft, compression strength − fc, Young’s mod-
ulus − E, fracture energy − Gf , hardening and softening parameters − Ahard, Asoft. These
values had to be set for individual mortars and brick. Our approach to obtain these values
consisted of an inverse FE analysis which was used to reproduce the experimentally obtained
data. This approach was chosen to obtain the input model parameters to be directly used be-
cause we used un-notched specimens, so it was not possible to measure fracture energy (due
to the unstable crack propagation). The mesh for the FE models was prepared in Salome, see
Figure 3.5. In case of three-point-bending test the mesh was refined in the area of expected
crack initiation (local size 2.5 mm, width of refined area 40 mm) and other parts were meshed
more coarse (local size 10 mm). Compression test specimen was meshed uniformly with mesh
local size 2.5 mm and for both Netgen 1D-2D-3D meshing algorithm was used. Boundary

Figure 3.5: FE model of specimens for three-point bending (left) and uniaxial compression
(right) tests.

conditions were added by MATLAB script. To prevent singularity in the case of three-point-
bending test, bottom support was accomplished by supporting 1 mm wide plane area. Both tests
were displacement-controlled and calculations were done in OOFEM, with the use of the above
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mentioned damage-plastic material model.

Firstly E and the parameters to influence flexural strength - ft and Gf were adjusted to
achieve complying results of force-displacement diagram for case of three-point-bending. Than
the material model parameters that influence the compression strength - fc,Ahard andAsoft were
calibrated by fitting the results of FE analysis from uniaxial compression tests. The Poisson’s, ν,
ratio was selected as 0.2 for both mortars and brick. This selection was not random, or intuitive,
but it was based on other studies [23, 84, 85]. The influence of different Poisson’s ratios was
also tested. When set in range 0.1 and 0.3 it has a negligible impact on results, as confirmed by
other studies [86, 87].

Natural materials contain a lot of discontinuities and other geometrical non-homogeneities
which result in relatively high scatter of results. Result of fitting of three-point-bending and
compression test for brick is provided by Figure 3.6. Complete results of fitting for mortars
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Figure 3.6: Fitting of the material model input parameters representing bricks on results of
three-point bending (left) and uniaxial compression (right) tests.

samples is provided by Figures 3.7 and 3.8.

The summary of the material model input values for brick and all mortar samples is provided
in Table 3.1.

Table 3.1: Key material input properties of bricks and the tested mortars; E, ν, fc, ft, and
Gf denote the Young’s modulus, Poisson’s ratio, compressive strength, tensile strength, and
fracture energy, respectively.

material E ν fc ft Gf Asoft Ahard

[GPa] [-] [MPa] [MPa] [J/m2] [-] [-]
bricks 14.0 0.20 30.0 2.70 30.0 2.0 0.10
LC-S 7.10 0.20 4.80 0.55 3.20 1.0 0.08

LMK-S 7.40 0.20 11.3 1.53 13.5 3.0 0.08
LMK-SCB 10.0 0.20 14.7 1.92 26.0 1.0 0.08

L-SCB 2.45 0.20 1.30 0.26 1.55 1.0 0.08
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Figure 3.7: Fitting of the material model input parameters representing mortars on results of
three-point bending tests.
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Figure 3.8: Fitting of the material model input parameters representing mortars on results of
uniaxial compression tests.
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3.3.2 Numerical Simulations of Masonry Pier Failure

Geometry of the masonry pier 3D FE model was same as in the cases of real destructive tests
− geometry was presented in Figure 2.8. Meshing was carried out by the same program and
algorithm as in case of basic FE models for obtaining basic material parameters − Netgen 1D-
2D-3D implemented in Salome. General mesh was divided into sub-meshes to assure continuity
of general mesh with sub-meshes meshed in different local sizes. Bricks were meshed with
coarser elements (local size 10 mm) than in case of mortar joints (local size 6 mm). Loading of
the piers was introduced to reproduce the experimental procedure realistically, so that the steel
cylinder and steel slabs were also included in the model. Steel slabs and loading cylinder were
modeled as an isotropic elastic continuum and local size of mesh elements was 10 mm.

The interface elements between bricks and surrounding mortar matrix was not defined, be-
cause interface was not the weakest link in the pull-out tests, for more detailed information
see Section 3.1. The interface between steel slabs and mortar matrix was not modeled either,
because modeling of this interface did not have any influence to the results. In total the mesh
contained 63158 nodes and 396296 elements (2707 1D edges, 49415 2D faces, 344174 3D tetra-
hedron volumes). Figure 3.9 shows both − modeled geometry and meshed masonry pier.

(a) Geometry of FE model (b) Meshed FE model

Figure 3.9: Geometry and FE mesh of investigated masonry pier.

Boundary conditions were applied thought a MATLAB script. The script worked on the
principle of detection desirable coordinates of nodes and putting the proper boundary conditions
to these nodes. The boundary condition in the form of prescribed incremental z-displacement
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was imposed upon the node in the center of the top base of the steel cylinder so that rotations
were allowed around all axes. Second boundary condition ensured the support at the bottom− it
was imposed onto a 1D line so that the rotations around all axes were allowed, see Figure 3.10.

(a) Selected single node on the top base
of cylinder

(b) Meshed line on the bottom base
used as support

Figure 3.10: Boundary conditions of FE model.

Loading was defined by a time-function and load-step increments were chosen in to order
minimize computational costs individually for each stage as shows example of the code snipped
from OOFEM input bellow

n P o i n t s 4 t 4 0 6 70 100 f ( t ) 4 0 0 . 6 e−3 0 . 9 e−3 1 . 5 e−3

This example is for the pier where LMK-SCB mortar was used, for other piers with different
mortar samples, function was defined with small differences. Time-function was defined by
4 points and totally contained 100 incremental steps. From 0 to 6 steps, the prescribed dis-
placement was equal to 0.6 × 10−6 m, from 7 to 70 0.3 × 10−6 m, and from 71 step to 100
0.6× 10−6 m. Steps were refined around the stage of initial cracks formation and propagation.
MNR method of iteration together with a displacement error tolerance as a criterion to terminate
iterations were used and maximum number of iterations was set to 1000, while minimum to 7.
Full list of set up of calculation from OOFEM input file is presented below.

EC column . o u t
E C c o l u m n w i t h o u t i n t e r f a c e , n o n l i n e a r damage a n a l y s i s
N o n L i n e a r S t a t i c n S t e p s 100 r t o l v 0 . 0 1 MaxI t e r 1000 M i n I t e r 7
manrmsteps 50 s t i f f M o d e 0 c o n t r o l l m o d e 1 renumber 1 nmodules 1
p r o f i l e O p t 1
vtkxml t s t e p a l l d o m a i n a l l p r i m v a r s 1 1 c e l l v a r s 1 102
v a r s 3 2 4 13 s t y p e 1 nvr 3 vrmap 4 1 2 3 0
domain 3d
OutputManager t s t e p a l l d o f m a n a l l
ndofman 63158 nelem 396296 n c r o s s s e c t 3 nmat 3 nbc 2 n i c 0 n l t f 2
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Computational procedures took approximately 54 hours each on a single core of six core Intel
XEON X5680 with 32GB of RAM memory.

The FE model was validated by comparing the predicted and measured load-displacement
diagrams during the real-scale destructive tests. The measurement of displacement during the
tests was carried out by placing the virtual extensometers on the top and bottom of the pier
in Ncorr post environment, as shows Figure 2.8. Results obtained thought destructive tests,
or more precisely evaluated by DIC are in a good accordance with the numerically obtained
predictions. In Figure 3.11 the results of both − destructive tests and numerical simulations are
summarized.
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Figure 3.11: Comparison between the numerically and experimentally obtained load-
displacement diagrams, describing the response of the tested masonry piers to the imposed
vertical displacement at the crest of the loading cell.



Chapter 4

Results

This section provides the summarized results of both DIC and numerical simulations. In par-
ticular the crack patterns are compared and the differences are discussed. The results indicate
the influence of different types of mortar on the load-bearing capacity of numerically modeled
piers.

4.1 Comparison of Crack Patterns

Using DIC method the visualized maps of principal strains were evaluated and compared with
the field of damage distribution provided by the FE model. Open-source program package
Salome was used for evaluating the OOFEM .vtu output files. The DIC outputs were com-
pared with the FE prediction at the same load-step. The predicted crack patterns by numerical
simulations are not in a perfect match for all tested specimens. This could be caused by non-
homogenous microstructure of mortars or neglecting some phenomena such as shrinkage.

In the case of lime-cement mortar, LC-S (Figure 4.1a), the model accurately predicted the
mode of failure: dominant formation of major vertical cracks on the more loaded (compressed)
side and formation of tensile cracks in mortar joints at the opposite side due to bending. In
the case of lime-metakaolin mortar, LMK-S (Figure 4.1b) correspondence between DIC and FE
model is not perfect. This was caused because the results of DIC were influenced by spalling the
surface layer of contrast pattern at the bottom of the tested pier, probably due to bad cohesion
with brick in this area. However, despite this limitation the major vertical crack formation in
the middle of pier can be identified in both FE model and DIC results. On the other hand,
a perfect agreement between FE model and DIC was obtained in case of LMK-SCB mortar,
containing metakaolin and crushed bricks. Observed mode of failure was predominantly caused
by formation of major splitting crack in the middle of pier (Figure 4.1c), probably due to the
transverse expansion and exceeding the tensile strength of bricks. In the case of weak L-SCB
mortar, a perfect correspondence between FE model and DIC was reached as well. Formation
of dominant smeared cracking at the pier edge was observed in both (Figure 4.1d).
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(a) LC-S mortar. (b) LMK-S mortar.

(c) LMK-SCB mortar. (d) L-SCB mortar.

Figure 4.1: DIC map of maximum principal strain (left within the couple) and FE model damage
prediction (right) on the face of the tested piers after reaching load-peak.

4.2 Influence of Mortar Properties on Mechanical Resistance
of Masonry Piers

The aim of this section is to find the optimum mortar parameters to achieve the highest load-
bearing capacity of the masonry piers loaded by a combination of compression and bending
through the verified FE model. For that purpose the model configuration− geometry, FE mesh,
materials, and boundary conditions − was considered the same as in the case of the verified
model, except for the variable properties of the investigated mortars.

As the reference material lime-metakaolin mortar without crushed bricks (LMK-S) was cho-
sen. For this type of mortar a single material parameter was changed at a time in order to
examine its impact on the load-bearing capacity of the modeled masonry pier.

This analysis clearly indicates what material parameters have the major influence on the
load-bearing capacity of the masonry, which can be considered in future design. A similar
method of optimization was used e.g. in the study by Sandoval and Roca [87].
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4.2.1 Influence of Mortar Young’s modulus

It could be assumed that the mortar Young’s modulus will have a major influence on the load-
bearing capacity of studied pier, but an opposite conclusion was reached from the numerical
model. There is even no abrupt change if the mortar change becomes stiffer than the masonry
units. However, the failure mode has changed significantly. Figure 4.3 provides the comparison
between both modes. Use of compliant mortar results in a multiple cracking of bricks at the
more loaded side, while the proper support provided by the stiff mortars leads to the formation
of a major crack passing through the entire pier.
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Figure 4.2: Dependence of the masonry pier
load-bearing capacity on mortar stiffness;
black line represents the Youngs modulus of
the bricks, E(b) = 14 GPa.

Figure 4.3: Crack patterns on masonry piers
containing compliant (E(m) = 2 GPa, left)
and stiff (E(m) = 20 GPa, right) mortar.

Use of less stiff mortars, e.g. without pozzolanic additives, could seem advantageous in
order to produce masonry with a larger elastic range. These masonry systems in theory better
resist seismic loading or imposed displacement due to differential settlement. Nevertheless, the
less stiff compliant lime based mortars without additives suffer from an increased shrinkage
cracking and lower resistance to moisture penetration into masonry.

4.2.2 Influence of Mortar Tensile Strength

The tensile strength and fracture energy had to be modified at the same time in order to avoid
snap-back as documents the study done by Bažant [88]. Modification of these values at the
same time was also important to preserve the same ductility for all investigated mortars.

The tensile strength of mortar has a minor effect on the load-carying capacity of the pier,
especially if the tensile strength of mortar is lower than tensile strength of masonry units. The
mortars of a higher tensile strength in tension act as a masonry reinforcement. Tensile strength-
ening of mortars is usually accomplished e.g. by steel rods in the bed joints [89].
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Our simulations predicted cracking of the bricks for mortars strong in tension. For the
weaker mortars the formation of tensile cracks in bricks at the part of pier in tension is mitigated
and a splitting crack occurs. On the other hand the tensile failure and formation of wedge in the
case of strong mortars is illustrated in Figure 4.5.
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Figure 4.4: Dependence of the masonry
pier load-bearing capacity on mortar ten-
sile strength; black line represents the ten-
sile strength of the bricks, f (b)

t = 2.7 MPa.

Figure 4.5: Crack patterns on masonry piers
containing weak (ft = 0.1 MPa, left) and
strong (ft = 3.2 MPa, right) mortar in ten-
sion.

4.2.3 Influence of Mortar Compressive Strength

The bed-joint mortar compressive strength determines the total load-bearing capacity of the ma-
sonry pier and as shows Figure 4.6. This material parameter seems to be crucial for masonry pier
subjected to a combination of compression and bending. Weak mortars suffers an irreversible
plastic deformations at low levels applied loading, which results in unbalanced supporting and
excessive deformations of the bed joints on the more loaded side of the pier. This fact conse-
quently results in the cracking of bricks as indicated in Figure 4.7. This mechanism seems to be
the most significant in determining the load-bearing capacity, especially in the case of very poor
mortars (f (m)

c < 10 MPa). When the bed joints contain mortar of higher compressive strength,
they do not suffer from the inelastic deformations in the early stages of loading and limiting
factor influencing the load-bearing capacity seems to be the tensile strength of bricks subjected
to transverse expansion. Similar mode of failure can be observed in the case of very stiff mortar
(Figure 4.3). Therefore mortars with superior compressive strength should be used especially
in the bed joints together with horizontal steel reinforcement mentioned above e.g. steel ladder
or truss mesh to reach the full potential of these mortars.



RESULTS 63

0 5 10 15 20 25 30 35
400

500

600

700

800

900

1000

lo
ad

-b
ea
ri
n
g
ca
p
ac
it
y
[k
N
]

mortar compressive strength [MPa]

Figure 4.6: Dependence of the masonry
pier load-bearing capacity on mortar com-
pressive strength; black line represents
the compressive strength of the bricks,
f

(b)
c = 30 MPa.

Figure 4.7: Crack patterns on masonry piers
containing weak (fc = 3 MPa, left) and
strong (fc = 33 MPa, right) mortar in com-
pression.

4.3 Discussion of Results

The selected geometry of masonry pier with the boundary conditions was addressed as an ex-
ample of typical load-bearing element in masonry, which was exposed to compression together
with tension. Damage in tension is considered as critical for masonry systems. Conventionally
used lime-cement mortar was compared with mortars containing active pozzoans − metakaolin
and beside of this was experimented with adding an additive in form of crushed bricks to re-
place part of river sand aggregates. This intent was based on previous findings, e.g. [22, 24, 90],
which declare that mortars containing active pozzolans and additives in form of crushed bricks
should exhibit a superior strength.

The series of destructive tests, namely three-point bending, compression and pull-out tests,
were carried our primarily in order to identify individual input parameters for materials in the
FE model. The results of these tests indicate that the mentioned additives positively affect the
material characteristics. In particular the addition of metakaolin provides the higher strength to
the lime-based mortars than the addition of Portland cement. The pure-lime mortars lacking any
additives exhibit very poor compression as well as tensile strength. These findings are in full
agreement with previous studies; e.g. work by Vejmelková et al. [91] claiming that the 20 %
replacement of lime by active pozzolan, metakaolin, can increase the compression strength of
mortar up to five times and flexural strength up to three times, which is in full agreement with
study by Velosa et al. [13].

The partial substitution of sand grains by crushed bricks fragments leads to a further im-
provement of the mechanical performance of lime-based mortars. This was discovered in
the ancient times based on rules-of-thumb experience, explaining their extensive use in these
times [25, 26, 29]. The higher strength is attributed to the formation of additional hydration
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products at the interface between brick particles and surrounding lime-matrix and also due to
the open porosity system of brick which enables to absorb water and then slowly release it
to consequently reduce the shrinkage-induced cracking. This results in better mortar integrity
as suggested by Nežerka et al. [22, 30] and lower stress concentration in surrounding matrix
around the aggregate particles.

The better structural performance of metakaolin-enriched mortars was also reflected in the
higher load-bearing capacity of the tested masonry piers. In case of pure lime mortar (L-SCB)
peak force was only 360 kN, while 600 kN in the case of lime-cement mortar (LC-S). When
30 % of binder was replaced by metakaolin (LMK-S), load-bearing capacity increased up to
800 kN and further enhancement was observed with the use of mortar containing crushed bricks
(LMK-SCB), reaching up to 915 kN. This superior strength can explain the high resistance
and longevity of some ancient masonry structures containing lime-based mortars with crushed
bricks, called cocciopesto [6, 36]. The mortar strength gain together with better adhesion be-
tween mortar and brick should also result in a better seismic resistance, as suggested by Costa
et al. [92].

Damage-plastic material model used for 3D FE simulations, supplied with proper material
parameters, allowed to reproduce the experimental results with a relatively very high accuracy
even in the case of strongly non-homogeneous masonry. The chosen strategy to represent the
mortar joints and bricks as two distinct materials allowed capturing the failure, usually consist-
ing of vertical splitting cracks and consequent the complete failure, as also indicates research
by Kaushik et al. [93]. The material characteristic with the highest impact on the load-bearing
capacity of the masonry pier appeared to be the compression strength of mortar, which is in
contradictions with the conclusions of Pavı́a et al. [94] and Gumaste et al. [95]. Results of their
research indicate that the mortar compressive strenght has just a slight influence on the load-
bearing capacity of masonry elements subjected to uniaxial compression. This disagreement
can be caused by different experimental set-up, in particular to the presence of bending mo-
ment and consequent tensile loading. The eccentric loading was responsible for the non-linear
behavior at relatively early loading-stage because of differential bed joints deformation.

On the other hand, the mortar stiffness appears to have just a negligible impact on the load-
bearing capacity. The suggestion of Zucchini and Lourenço [96] that the difference between
the Young’s moduli of bricks and mortar is the forerunner of the compression failure was not
confirmed.



Chapter 5

Conclusions

The selected strategy to combine the comprehensive experimental analysis together with the
numerical modeling revealed new findings to be used when designing bed joint mortars. The
study was primarily focused on the lime-based mortars compatible with historical materials and
their use is in accordance with the requirements of the authorities for cultural heritage. However,
the information contained also provide new insight into the design of mortars based on modern
materials.

The results of basic material tests indicate the superior strength of mortars enriched with
metakaolin, in comparison with the pure-lime or the lime-cement based mortars. The strength
can be further increased by the addition of crushed clay materials, such as bricks. In that
case the strength enhancement is mostly attributed to the reduction of microcracking due to
the reduced shrinkage and also to the formation of additional hydration products around the
compliant ceramic aggregates. Moreover, the water retained within the crushed brick fragments
is slowly released, supporting the hydraulic reactions taking place in the surrounding matrix.

The enhanced strength of mortars enriched by metakaolin and those containing crushed
bricks was reflected to the greatly increased load-bearing capacity of masonry piers subjected
to the compression and the bending load. This explains extraordinary resistance and durability
of ancient masonry structures containing cocciopesto mortars. The use of ceramic waste by-
products from ceramic plants makes this material sustainable for a relatively low cost, because
the fragments partially replace binder, what is the most expensive mortar component.

Based on the comparison of the results of FE calculations and experimental observations,
the damage-plastic model seems to be most suitable for the description of constitutive behavior.
The chosen strategy to model the bricks and the mortars as two distinct materials led to a very
accurate reproduction of the experimentally obtained data. The comparison of the FE calcu-
lations with the experiments was carried out in terms of matching the crack patterns obtained
through DIC and by comparisons of the load-displacement diagrams. The experimental results
as well as the numerical analysis indicate that the mortar properties have an enormous impact
on the load-bearing capacity of masonry, strain localization and formation of cracks.

The numerical analysis, based on the properly validated FE model by the comprehensive
experimental analysis, revealed that mortar compressive strength is the key material parameter
with respect to the load-bearing capacity of the piers subjected to the combination of bending
and compression load. Considering the studied geometry and boundary conditions, the influ-
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ence of Young’s modulus and tensile strength is reflected in the different modes of failure and
crack patterns, however do not have any significant influence on the load-bearing capacity.
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Comprehensive study on microstructure and mechanical properties of lime-pozzolan
pastes with additions of metakaolin and brick dust. Cement and Concrete Research,
64:17–29, 2014.
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stiffness on fracture-mechanical properties of lime-based mortars. Applied Mechanics
and Materials, 486:289–294, 2014.

[25] G. Baronio, L. Binda, and N. Lombardini. The role of brick pebbles and dust in
conglomerates based on hydrated lime and crushed bricks. Construction and Building
Materials, 11:33–40, 1997.

[26] L.G. Mallinson and I.L. Davies. A historical examination of concrete. Office for Official
Publications of the European Communities, Luxembourg, Final Report
CD-NA-10937-EN-C, 1987.



REFERENCES 69

[27] A. Farci, D. Floris, and P. Meloni. Water permeability vs. porosity in samples of Roman
mortars. Journal of Cultural Heritage, 6:55–59, 2005.

[28] L. Sbordoni-Mora. Les matériaux des enduits traditionnels. In: Proceedings of the
ICCROM Symposium on Mortars, Cements and Grouts used in the Conservation of
Historic Buildings, Rome, pages 375–383, 1981.

[29] P. Degryse, J. Elsen, and M. Waelkens. Study of ancient mortars from Sagalassos
(Turkey) in view of their conservation. Cement and Concrete Research, 21:1457–1463,
2002.
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[42] ČSN EN 1015-11:1999 - Methods of test for mortar for masonry, Part 11: Determination
of flexural and compressive strength of hardened mortar, 1999. Czech National Standard.
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[90] V. Nežerka, P. Tesárek, and J. Zeman. Fracture-micromechanics based model of mortars
susceptible to shrinkage. Key Engineering Materials, 592–593:189–192, 2014.
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